Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010; 33(5): 657-70. doi: 10.1016/j.immuni.2010.11.011.
Leliefeld P.H., Wessels C.M., Leenen L.P., Koenderman L., Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit. Care. 2016; 20: 73. doi: 10.1186/s13054-016-1250-4.
Nathan C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 2006; 6(3): 173-82. doi: 10.1038/nri1785.
Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 2014; 9: 181-218. doi: 10.1146/annurev-pathol-020712-164023.
Segal A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 2005; 23: 197-223. doi:10.1146/annurev.immunol.23.021704.115653. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2092448/(accessed 11 Sept 2017).
Urban C.F., Lourido S., Zychlinsky A. How do microbes evade neutrophil killing? Cell Microbiol. 2006; 8(11): 1687-96. doi: 10.1111/j.1462-5822.2006.00792.x.
Döhrmann S., Cole J.N., Nizet V. Conquering neutrophils. PLoS Pathog. 2016; 12(7): e1005682. doi: 10.1371/journal.ppat.1005682. Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005682 (accessed 11 Sept 2017)
Nauseef W.M. Neutrophils, from cradle to grave and beyond. Immunol. Rev. 2016; 273(1): 5-10. doi: 10.1111/imr.12463.
Dunkelberger J.R., Song W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010; 20(1): 34-50. doi: 10.1038/cr.2009.139. Available at: https://www.nature.com/cr/journal/v20/n1/full/cr2009139a.html (accessed 11 Sept 2017)
van Kessel K.P., Bestebroer J., van Strijp J.A. Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front. Immunol. 2014; 5: 467. doi: 10.3389/fimmu.2014.00467. Available at: http://journal.frontiersin.org/article/10.3389/fimmu.2014.00467/full (accessed 11 Sept 2017)
Amulic B., Cazalet C., Hayes G.L., Metzler K.D., Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 2012; 30: 459-89. doi: 10.1146/annurev-immunol-020711-074942.
Rigby K.M., DeLeo F.R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol. 2012; 34(2): 237-59. doi: 10.1007/s00281-011-0295-3. Available at:: https://link.springer.com/article/10.1007/s00281-011-0295-3 (accessed 11 Sept 2017)
Ford J.W., McVicar D.W. TREM and TREM-like receptors in inflammation and disease. Curr. Opin. Immunol. 2009; 21(1): 38-46. doi: 10.1016/j.coi.2009.01.009.
Mщcsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J. Exp. Med. 2013; 210(7): 1283-99. doi: 10.1084/jem.20122220. Available at (accessed 11 Sept 2017): http://jem.rupress.org/content/210/7/1283.long
Roos D., van Bruggen R., Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003; 5(14): 1307-15. doi: 10.1016/j.micinf.2003.09.009.
Greenlee-Wacker M., DeLeo F.R., Nauseef W.M. How methicillin-resistant Staphylococcus aureus evade neutrophil killing. Curr. Opin. Hematol. 2015; 22(1): 30-5. doi: 10.1097/MOH.0000000000000096.
Odobasic D., Kitching A.R., Holdsworth S.R. Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase. J. Immunol. Res. 2016; 2016: 11. doi: 10.1155/2016/2349817.2349817. Available at: http://dx.doi.org/10.1155/2016/2349817(accessed 11 Sept 2017)
Bardoel B.W., Kenny E.F., Sollberger G., Zychlinsky A. The balancing act of neutrophils cell host and microbe. Cell Host. Microbe. 2014; 15(5): 526-36. doi: 10.1016/j.chom.2014.04.011. Available at: http://www.cell.com/action/showImagesData?pii=S1931-3128%2814%2900145-0 (accessed 11 Sept 2017)
Klebanoff S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 2005; 77(5): 598-625.
Dapunt U., Hansch G.M., Arciola C.R. Innate Immune Response in Implant-Associated Infections: Neutrophils against Biofilms. Materials. 2016; 9(5): 387. Available at: http://www.mdpi.com/1996-1944/9/5/387/htm (accessed 11 Sept 2017)
Morozov V.I., Pryatkin S.A., Kalinski M.I., Rogozkin V.A. Effect of exercise to exhaustion on myeloperoxidase and lysozyme release from blood neutrophils. Eur. J. Appl. Physiol. 2003; 89(3-4): 257-62. doi: 10.1007/s00421-002-0755-5.
Winterbourn C.C., Kettle A.J., Hampton M.B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 2016; 85: 765-92. doi: 10.1146/annurev-biochem-060815-014442.
Cardot-Martin E., Casalegno J.S., Badiou C., Dauwalder O., Keller D., Prévost G., et al. α-defensins partially protect human neutrophils against Panton-Valentine leukocidin produced by Staphylococcus aureus. Lett. Appl. Microbiol. 2015; 61(2): 158-64. doi: 10.1111/lam.12438.
Frasca L., Lande R. Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases. Curr. Pharm.Biotechnol. 2012; 13(10): 1882-97. doi: 10.2174/138920112802273155.
Nordenfelt P., Tapper H.J. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 2011; 90(2): 271-84. doi: 10.1189/jlb.0810457.
Chebotar I.V. Mechanisms of antibiofilm immunity. Annals of the Russian Academy of Medical Sciences. 2012; 67(12): 22-9. doi:10.15690/vramn.v67i12.477. (in Russian)
Schuerholz T., Brandenburg K., Marx G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit. Care. 2012; 16(2): 207. doi: 10.1186/cc11220. Available at: https://doi.org/10.1186/cc11220 (accessed 11 Sept 2017)
Cojocaru I.M., Cojocaru M., Burcin C. Evaluation of granulocyte elastase as a sensitive diagnostic parameter of inflammation in first ischemic stroke. Rom. J. Intern. Med. 2006; 44(3): 317-21. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18386609 (accessed 11 Sept 2017)
Naegelen I., Beaume N., Plançon S., Schenten V., Tschirhart E.J., Bréchard S. Regulation of Neutrophil Degranulation and Cytokine Secretion: A Novel Model Approach Based on Linear Fitting. J. Immunol. Res. 2015; 2015: 817038. Available at: https://www.hindawi.com/journals/jir/2015/817038/ (accessed 11 Sept 2017)
Park C.B., Yi K.S., Matsuzaki K., Kim M.S., Kim S.C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. U.S.A. 2000; 97(15): 8245-50. Available at: http://www.pnas.org/content/97/15/8245.long (accessed 11 Sept 2017)
Malcolm K.C., Worthen G.S. Lipopolysaccharide stimulates p38-dependent induction of antiviral genes in neutrophils independently of paracrine factors. J. Biol. Chem. 2003; 278(18): 15693-701. Available at: http://www.jbc.org/content/278/18/15693.long (accessed 11 Sept 2017)
Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532-5.
Brinkmann V., Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 2012; 198(5): 773-83. doi Available at: http://jcb.rupress.org/content/198/5/773.long(accessed 11 Sept 2017)
Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.C., Nauseef W.M. Myeloperoxidase: a front-line defeder against phagocytosed microorganisms. J. Leukoc. Biol. 2013; 93(2): 185-98. doi: 10.1189/jlb.0712349.
Theeß W., Sellau J., Steeg C., Klinke A., Baldus S., Cramer J.P., et al. Myeloperoxidase attenuates pathogen clearance during Plasmodium yoelii nonlethal infection. Infect. Immun. 2016; 85(1): e00475-16. Available at: http://iai.asm.org/content/85/1/e00475-16.long (accessed 11 Sept 2017)
Delgado-Rizo V., Martinez-Guzman M.A., Iniguez-Gutierrez L., Garcia-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front. Immunol. 2017; 8: 81. doi: 10.3389/fimmu.2017.00081. Available at: http://journal.frontiersin.org/article/10.3389/fimmu.2017.00081/full (accessed 11 Sept 2017)
Yang H., Biermann M.H., Brauner J.M., Liu Y., Zhao Y., Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front. Immunol. 2016; 7: 302. Available at: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00302/full (accessed 11 Sept 2017)
Chakraborty S., Kaur S., Guha S., Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta. 2012; 1826(1): 129-69. doi: 10.1016/j.bbcan.2012.03.008.
Koymans K.J., Feitsma L.J., Brondijk T.H., Aerts P.C., Lukkien E., Lössl P., et al. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc. Natl. Acad. Sci. U.S.A. 2015; 112(35): 11018-23.
Amulic B., Hayes G. Neutrophil extracellular traps. Curr. Biol. 2011; 21(9): R297-8.:
Pang Y.Y., Schwartz J., Bloomberg S., Boyd J.M., Horswill A.R., Nauseef W.M. Methionine sulfoxide reductases protect against oxidative stress in staphylococcus aureus encountering exogenous oxidants and human neutrophils. J. Innate. Immun. 2014; 6(3): 353-64.
Nishimura Y., Lee H., Hafenstein S., Kataoka C., Wakita T., Bergelson J.M., et al. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog. 2013; 9(7): e1003511. Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003511 (accessed 11 Sept 2017)
Lee L.Y., Höök M., Haviland D., Wetsel R.A., Yonter E.O., Syribeys P., et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 2004; 190(3): 571-9.
Higgins J., Loughman A., Van Kessel K.P., Van Strijp J.A., Foster T.J. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microb. Let. 2006; 258(2): 290-6.
Postma B., Poppelier M.J., van Galen J.C., Prossnitz E.R., van Strijp J.A., de Haas C.J., et al. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J. Immunol. 2004; 172(11): 6994-7001.
van Wamel W.J., Rooijakkers S.H., Ruyken M., van Kessel K.P., van Strijp J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 2006; 188(4): 1310-5.
Gustafsson E., Rosén A., Barchan K., van Kessel K.P., Haraldsson K., Lindman S., et al. Directed evolution of chemotaxis inhibitory protein of Staphylococcus aureus generates biologically functional variants with reduced interaction with human antibodies. Protein Eng. Des. Sel. 2010; 23(2): 91-101.
Thammavongsa V., Missiakas D.M., Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013; 342(6160): 863-6. doi: 10.1126/science.1242255.
Abate F., Malito E., Falugi F., Margarit Y Ros I., Bottomley M.J. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of SpyCEP, a candidate antigen for a vaccine against Streptococcus pyogenes. Acta Cryst. 2013; 69(Pt 10): 1103-6. doi: 10.1107/S1744309113024871. Available at: http://scripts.iucr.org/cgi-bin/paper?S1744309113024871(accessed 11 Sept 2017)
Lazaro-Diez M., Chapartegui-Gonzalez I., Redondo-Salvo S., Leigh C., Merino D., Segundo D., et al. Human neutrophils phagocytose and kill Acinetobacter baumannii and A. pittii. Sci. Rep. 2017; 7(1): 4571. doi: 10.1038/s41598-017-04870-8.
Feng S., Bowden N., Fragiadaki M., Souilhol C., Hsiao S., Mahmoud M., et al. Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler. Thromb. Vasc. Biol. 2017; 37(11): 2087-2101. doi: 10.1161/ATVBAHA.117.309249.
Guo X., Zhu Z., Zhang W., Meng X., Zhu Y., Han P., et al. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg. Microbes. Infect. 2017; 6(5): e39. doi: 10.1038/emi.2017.21. Available at: https://www.nature.com/emi/journal/v6/n5/full/emi201721a.html (accessed 11 Sept 2017)
Niyonsaba F., Madera L., Afacan N., Okumura K., Ogawa H., Hancock R.E. The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. J. Leukoc. Biol. 2013; 94(1): 159-70. doi: 10.1189/jlb.1012497.
Corriden R., Hollands A., Olson J., Derieux J., Lopez J., Chang J.T., et al. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat. Commun. 2015; 6: 8369. doi: 10.1038/ncomms9369. Available at: https://www.nature.com/articles/ncomms9369 (accessed 11 Sept 2017)
Hollands A., Corriden R., Gysler G., Dahesh S., Olson J., Raza Ali S., et al. Natural product anacardic acid from cashew nut shells stimulates neutrophil extracellular trap production and bactericidal activity. J. Biol. Chem. 2016; 291(27): 13964-73.