INFLAMMASOMAL DISEASES
DOI:
Abstract
NLR family of receptors are important members of the innate immunity that respond to exogenous pathogens and endogenous danger signals. Activation of NLR leads to formation of a multimolecular complex called an inflammasome. This complex is used to drive the processing and release of pro-inflammatory cytokines IL-1β and IL-18. Defects in regulation of an inflammasome activation underlie the development of a series of autoinflammatory diseases such as cryopyrin-associated periodic syndromes, familial Mediterranean fever and others. In this review we discuss forms of pathology associated with mutations and gene polymorphism of inflammasomes NLRP3, NLRP1, NLRС2 and NLRP12.
About the authors
Pirozhkov Sergej V.Litvitskiy P.F.
References
Fullard N., O’Reilly S. Role of innate immune system in systemic sclerosis. Semin. Immunopathol. 2015; 37: 511-7.
Guo H., Callaway J.B., Ting J. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015; 21: 677-87.
Ting J.P., Lovering R.C., Alnemri E.S., Bertin J., Boss J.M., et al. The NLR gene family: a standard nomenclature. Immunity. 2008; 28: 285-7.
Sharma D., Kanneganti T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016; 213: 617-29.
Faustin B., Lartigue L., Bruey J.M. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell. 2007; 25: 713-24.
Lamkanfi M., Dixit V.M. Mechanisms and functions of inflammasomes. Cell. 2014: 157: 1013-22.
Kim S., Bauernfeind F., Ablasser A. et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur. J. Immunol. 2010; 40: 1545-51.
Mayer-Barber K.D., Barber D.L., Shenderov K. et al. Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 2010; 184: 3326-30.
Jo E.-K., Kim J.K., Shin D.M., Sasakawa Ch. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 2016; 13: 148-59.
Cai X., Xu H., Liu S., Jiang Q.X., Halfmann R., Chen Z.J. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell. 2014; 156: 1207-22.
Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015; 526: 660-5.
Embry C.A., Franchi L., Nunez G., Mitchell T.C. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci. Signal. 2011; 4: ra28.
Martinon F., Petrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440: 237-41.
Duewell P., Kono H., Rayner K.J. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010; 464: 1357-61.
Kanneganti T.D., Ozoren N., Body-Malapel M. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006; 440: 233-6.
Masters S.L., Dunne A., Subramanian S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol. 2010; 11: 897-904.
Netea M.G., Nold-Petry C.A., Nold M.F. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 2009; 113: 2324-35.
Piccini A., Carta S., Tassi S., Lasiglie D., Fossati G., Rubartelli A. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc. Natl. Acad. Sci. USA. 2008; 105: 8067-72.
Bochner B.S., Luscinskas F.W., Gimbrone M.A. et al. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J. Exp. Med. 1991; 173: 1553-7.
Van de Veerdonk F.L., Netea M.G., Dinarello C.A., Joosten L.A. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 2011; 32: 110-6.
Ozkurede V.U., Franchi L. Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromes. Clin. Exp. Immunol. 2011; 167: 382-90.
Nakamura Y., Kambe N., Saito M., Nishikomori R., Kim Y.G., Murakami M. et al. Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J. Exp. Med. 2009; 206: 1037-46.
Latz E., Xiao T.S., Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013; 13: 397-411.
Takahashi M. NLRP3 inflammasome as a novel player in myocardial infarction. Int. Heart J. 2014; 55: 101-5.
Liu W., Yin Y., Zhou Z., He M., DaiY. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res. 2014; 63: 33-43.
Giuliani A.L., Sarti A.C., Falzoni S., Di Virgilio F. The P2X7 receptor-interleukin-1 liaison. Frontiers in Pharmacology. 2017; 8: 123. doi: 10.3389/fphar.2017.00123.
Hornung V., Bauernfeind F., Halle A. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008; 9: 847-56.
Franchi L., Chen G., Marina-Garcia N. et al. Calcium-independent phospholipase A2beta is dispensable for inflammasome activation and its inhibition by bromoenol lactone. J. Innate Immun. 2009; 1: 607-17.
Xiao Y.D., Huang Y.Y., Wang H.X., Wu Y., Leng Y., Liu M. et al. Thioredoxin-interacting protein mediates NLRP3 inflammasome activation involved in the susceptibility to ischemic acute kidney injury in diabetes. Oxidative Med. Cell. Longevity. 2016; 2016, Article ID 2386068, 17 pages http://dx.doi.org/10.1155/2016/2386068.
Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012; 36: 401-14.
Lee G.S., Subramanian N., Kim A.I., Aksentijevich I., Goldbach-Mansky R. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012; 492: 123-7.
McDermott M.F., Aksentijevich I., Galon J., McDermott E.M., Ogunkolade B.W., Centola M. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999; 97: 133-44.
McGonagle D., McDermott M.F. A proposed classification of the immunological diseases. PLoS Med. 2006; 3: e297.
Lane T., Loeffler J.M., Rowczenio D.M., Gilbertson J.A., Bybee A. et al. AA amyloidosis complicating the hereditary periodic fever syndromes. Arthritis Rheum. 2013; 65: 1116-21.
Aganna E., Martinon F., Hawkins P.N., Ross J.B., Swan D.C., et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum. 2002; 46: 2445-52.
Dowds T.A., Masumoto J., Zhu L., Inohara N., Nunez G. Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J. Biol. Chem. 2004; 279: 21924-8.
Gattorno M., Tassi S., Carta S., Delfino L., Ferlito F., Pelagatti M.A. et al. Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 2007; 56: 3138-48.
Carta S., Penco F., Lavieria R., Martini A., Dinarello C.A., Gattorno M., Rubartelli A. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. PNAS. 2015; 112: 2835-40.
Saito M., Nishikomori R., Kambe N., Fujisawa A., Tanizaki H. et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood. 2008; 111: 2132-41.
Goldbach-Mansky R., Kastner D.L. Autoinflammation: the prominent role of IL-1 in monogenic autoinflammatory diseases and implications for common illnesses. J. Allergy Clin. Immunol. 2009; 124: 1141-9.
Hoffman H.M., Wanderer A.A., Broide D.H. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J. Allergy Clin. Immunol. 2001; 108: 615-20.
Prieur A.M. A recently recognized chronic inflammatory disease of early onset characterized by the triad of rash, central nervous system involvement and arthropathy. Clin. Exp. Rheumatol. 2001; 19: 103-6.
Shinkai K., McCalmont T.H., Leslie K.S. Cryopyrin-associated periodic syndromes and autoinflammation. Clin. Exp. Dermatol. 2008; 33: 1-9.
Muckle T.J., Wells M. Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q. J. Med. 1962; 31: 235-48.
Salugina S.O., Kuzmina N.N., Fiodorov E.S. Autoinflammatory syndromes - a new multidisciplinary problem of paediatrics and rheumatology. Pediatriya. 2012; 91(5): 120-32. (in Russian)
Aksentijevich I., CDP, Remmers E.F., Mueller J.L., Le J., et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007; 56: 1273-85.
Haas N., Kuster W., Zuberbier T., Henz B.M. Muckle-Wells syndrome: clinical and histological skin findings compatible with cold air urticaria in a large kindred. Br. J. Dermatol. 2004; 151: 99-104.
Hawkins P.N., Lachmann H.J., McDermott M.F. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N. Engl. J. Med. 2003; 348: 2583-4.
Lorber J. Syndrome for diagnosis: dwarfing, persistently open fontanelle; recurrent meningitis; recurrent subdural effusions with temporary alternate-sided hemiplegia; high-tone deafness; visual defect with pseudopapilloedema; slowing intellectual development; recurrent acute polyarthritis; erythema marginatum, splenomegaly and iron-resistant hypochromic anaemia. Proc. R. Soc. Med. 1973; 66: 1070-1.
Hashkes P.J., Lovell D.J. Recognition of infantile-onset multisystem inflammatory disease as a unique entity. J. Pediatr. 1997; 130: 513-5.
Hill S.C., Namde M., Dwyer A., Poznanski A., Canna S. et al. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr. Radiol. 2007; 37: 145-52.
Goldbach-Mansky R., Dailey N.J., Canna S.W., Gelabert A., Jones J. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N. Engl. J. Med. 2006; 355: 581-92.
Prieur A.M., Griscelli C., Lampert F., Truckenbrodt H., Guggenheim M.A. et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand. J. Rheumatol. Suppl. 1987; 66: 57-68.
Goldbach-Mansky R., Shroff S.D., Wilson M., Snyder C., Plehn S. et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008; 58: 2432-42.
Wannamaker W., Davies R., Namchuk M. et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3 S)-2-ethoxy-5-oxo-tetrahydrofuran-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J. Pharmacol. Exp. Ther. 2007; 321: 509-16.
Stack J.H., Beaumont K., Larsen P.D. et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 2005; 175: 2630-4.
Fonnesu C., Cerquaglia C., Giovinale M., Curigliano V., Verrecchia E., de Socio G., et al. Familial Mediterranean Fever: a review for clinical management. Joint, bone, spine: revue du rhumatisme. 2009; 76: 227-33.
Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997; 90: 797-807.
Richards N., Schaner P., Diaz A., Stuckey J., Shelden E., et al. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem. 2001; 276: 39320-9.
Yu J.W., Wu J., Zhang Z., Datta P., Ibrahimi I. et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006; 13: 236-49.
Chae J.J., Wood G., Masters S.L., Richard K., Park G. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc. Natl. Acad. Sci. USA. 2006; 103: 9982-7.
Papin S., Cuenin S., Agostini L., Martinon F., Werner S. et al. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ. 2007; 14: 1457-66.
Chae J.J., Aksentijevich I., Kastner D.L. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br. J. Haematol. 2009; 146: 467-78.
Yu J.W., Fernandes-Alnemri T., Datta P., Wu J., Juliana C., Solorzano L. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell. 2007; 28: 214-27.
Chae J.J., Cho Y.H., Lee G.S., Cheng J., Liu P.P., Feigenbaum L. et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011; 34: 755-68.
Hoffman H.M., Simon A. Recurrent febrile syndromes: what a rheumatologist needs to know. Nat. Rev. Rheumatol. 2009; 5: 249-56.
Özen S., Batu E.D., Demir S. Familial mediterranean fever: recent developments in pathogenesis and new recommendations for management. Frontiers in Immunology. 2017; 8: 253. doi: 10.3389/fimmu.2017.00253.
Shoham N.G., Centola M., Mansfield E., Hull K.M., Wood G., Wise C.A., et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl. Acad. Sci. USA. 2003; 100: 13501-6.
Brenner M., Ruzicka T., Plewig G., Thomas P., Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br. J. Dermatol. 2009; 161: 1199-201.
Van der Burgh R., Ter Haar N.M., Boes M.L., Frenkel J. Mevalonate kinase deficiency, a metabolic autoinflammatory disease. Clin. Immunol. 2013; 147: 197-206.
Pontillo A., Paoluzzi E., Crovella S. The inhibition of mevalonate pathway induces upregulation of NALP3 expression: new insight in the pathogenesis of mevalonate kinase deficiency. Eur. J. Hum. Genet. 2010; 18: 844-7.
Kim I., Xu W., Reed J.C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2008; 7: 1013-30.
Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011; 12: 222-30.
Kuijk L.M., Beekman J.M., Koster J., Waterham H.R., Frenkel J. et al. HMG-CoA reductase inhibition induces IL-1beta release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood. 2008; 112: 3563-73.
de Koning H.D., Bodar E.J., van der Meer J.W., Simon A. Schnitzler syndrome: beyond the case reports: review and follow-up of 94 patients with an emphasis on prognosis and treatment. Semin. Arthritis Rheum. 2007; 37: 137-48.
Pizzirani C., Falzoni S., Govoni M., La Corte R., Donadei S. et al. Dysfunctional inflammasome in Schnitzler’s syndrome. Rheumatology (Oxford). 2009; 48: 1304-8.
Jin Y., Mailloux C.M., Gowan K., Riccardi S.L., LaBerge G. et al. NALP1 in vitiligo-associated multiple autoimmune disease. N. Engl. J. Med. 2007; 356: 1216-25.
Zurawek M., Fichna M., Januszkiewicz-Lewandowska D., Gryczyńska M., Fichna P., Nowak J. A coding variant in NLRP1 is associated with autoimmune Addison’s disease. Hum. Immunol. 2010; 71: 530-4.
Finger J.N., Lich J.D., Dare L.C., Cook M.N., Brown K.K., Duraiswami C. et al. Autolytic proteolysis within the function to find domain (FII ND) is required for NLRP1 inflammasome activity. J. Biol. Chem. 2012; 287: 25030-7.
Martinon F., Mayor A., Tschopp J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 2009; 27: 229-65.
Lesage S., Zouali H., Cezard J.P., Colombel J.F., Belaiche J. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 2002; 70: 845-57.
Abraham C., Cho J.H. Functional consequences of NOD2 (CARD15) mutations. Inflamm. Bowel Dis. 2006; 12: 641-50.
Blau E.B. Familial granulomatous arthritis, iritis, and rash. J. Pediatr. 1985; 107: 689-93.
Miceli-Richard C., Lesage S., Rybojad M., Prieur A.M., Manouvrier-Hanu S. et al. CARD15 mutations in Blau syndrome. Nat. Genet. 2001; 29: 19-20.
Rahman P., Bartlett S., Siannis F., Pellett F.J., Farewell V.T. et al. CARD15: a pleiotropic autoimmune gene that confers susceptibility to psoriatic arthritis. Am. J. Hum. Genet. 2003; 73: 677-81.
Jordan C.T., Cao L., Roberson E.D., Pierson K.C., Yang C.F., Joyce C.E. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 2012; 90: 784-95.
Lich J.D., Ting J.P. Monarch-1/PYPAF7 and other CATERPILLER (CLR, NOD, NLR) proteins with negative regulatory functions. Microbes Infect. 2007; 9: 672-6.
Abaturov A.Ye., Volosovets A.P., Yulish Ye.I. The role of NOD-like receptors in recognition of pathogen-associated molecular patterns of infectious pathogens and in development of inflammation. Part 4. NLR family proteins are involved in the regulation of process of inflammation and immune response. Zdorov’e rebyenka. 2013; 48(5): 150-5. (in Russian)
Vladimer G.I., Weng D., Paquette S.W., Vanaja S.K., Rathinam V.A., Aune M.H. et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity. 2012; 37: 96-107.
Jeru I., Duquesnoy P., Fernandes-Alnemri T., Cochet E., Yu J.W. et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc. Natl. Acad. Sci. USA. 2008; 105: 1614-9.
Дополнительные файлы
Для цитирования:
For citation:
Refbacks
- Refbacks are not listed

Контент доступен под лицензией Creative Commons Attribution 3.0 License.
ISSN: (Print)
ISSN: (Online)