Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta biomaterialia. 2012; 8: 3888-903
Mavrogenis A.F., Dimitriou R., Parvizi J., Babis G.C. Biology of implant osseointegration. J. Musculoskelet Neuronal Interact. 2009; 9: 61-71.
Olivares-Navarrete R., Hyzy S.L., Gittens R.A., Schneider J.M., Haithcock D.A., Ullrich P.F., et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013; 13: 1563-70.
Franz S., Rammelt S., Scharnweber D., Simon J.C. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011; 32: 6692-709.
Hotchkiss K.M., Reddy G.B., Hyzy S.L., Schwartz Z., Boyan B.D., Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016; 31: 425-34.
Gordon S. Phagocytosis: An Immunobiologic Process. Immunity. 2016; 44(3): 463-75.
Peng M., Wang Y., Qiang L., Xu Y., Li C., Li T., et al. Interleukin-35 Inhibits TNF-α-Induced Osteoclastogenesis and Promotes Apoptosis via Shifting the Activation From TNF Receptor-Associated Death Domain (TRADD)-TRAF2 to TRADD-Fas-Associated Death Domain by JAK1/STAT1. Front Immunol. 2018; 16(9): 1417.
Zhai Z., Qu X., Li H., Yang K., Wan P., Tan L., et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-kappaB and NFATc1 signaling. Biomaterials. 2014; 35: 6299-310.
Ayuk J., Gittoes N.J. Contemporary view of the clinical relevance of magnesium homeostasis. Ann. Clin. Biochem. 2014; 51(Pt 2): 179-88.
Kim J.Y., Min J.Y., Baek J.M., Ahn S.J., Jun H.Y., Yoon K.H., et al. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Bone. 2015; 79: 242-51. doi: 10.1016/j.bone.2015.06.011. 21.
Suda T., Shima N., Higashio K. Merger of bone biology and immunology. Tanpakushitsu Kakusan Koso. 2002; 47: 1837-43.
Limmer A., Wirtz D.C. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption. Z. Orthop Unfall. 2017; 155: 273-80.
Jung Y., Wang J., Havens A., Sun Y., Wang J., Jin T., Taichman R.S. Cell-to-cell contact is critical for the survival of hematopoietic progenitor cells on osteoblasts. Cytokine. 2005; 32: 155-62.
Cornish J., Gillespie M.T., Callon K.E., Horwood N.J., Moseley J.M., Reid I.R. Interleukin-18 is a novel mitogen of osteogenic and chondrogenic cells. Endocrinology. 2005; 144: 1194-201.
Liu H., Luo T., Tan J., Li M., Guo J. Osteoimmunology’ Offers New Perspectives for the Treatment of Pathological Bone Loss. Curr Pharm. Des. 2017; 41: 6272-78.
Varghese S. Matrix metalloproteinases and their inhibitors in bone: an overview of regulation and functions. Front Biosci. 2006; 11: 2949-66.
D’Amelio P., Grimaldi A., Di Bella S., Brianza S.Z., Cristofaro M.A., Tamone C., et al. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone. 2008; 43: 92-100.
Kobayashi K., Takahashi N., Jimi E., Udagawa N., Takami M., Kotake S., et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 2000; 191: 275-86.
Sato K., Suematsu A., Okamoto K., Yamaguchi A., Morishita Y., Kadono Y., et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 2006; 203: 2673-82.
Pietschmann P., Grisar J., Thien R., Willheim M., Kerschan-Schindl K., Preisinger E., Peterlik M. Immune phenotype and intracellular cytokine production of peripheral blood mononuclear cells from postmenopausal patients with osteoporotic fractures. Exp. Gerontol. 2001; 36: 1749-59.
Hustmyer F.G., Walker E., Yu X.P., Girasole G., Sakagami Y., Peacock M., Manolagas S.C.J. Cytokine production and surface antigen expression by peripheral blood mononuclear cells in postmenopausal osteoporosis. Bone Miner Res. 1993; 8: 51-9.
Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad. Sci. 2000; 908: 244-54.
Pietschmann P., Rauner M., Sipos W., Kerschan-Schindl K. Osteoporosis: an age-related and gender-specific disease - a mini-review. Gerontology. 2009; 55: 3-12.
Pilbeam C.C., Harrison J.R., Raisz L.G. Prostaglandins and bone metabolism; in Bilezikian J.P., Raisz L.G., Rodan G.A. (eds): Principles of Bone Biology. San Diego: Academic Press; 2002: 979-94.
Ha H., Lee J.H., Kim H.N., Kim H.M., Kwak H.B., Lee S., et al. Alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis. J. Immunol. 2006; 176: 111-17.
Matsuzaki K., Udagawa N., Takahashi N., Yamaguchi K., Yasuda H., Shima N., et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem. Biophys. Res. Commun. 1998; 246: 199-204.
Stejskal D., Bartek J., Pastorková R., Růzicka V., Oral I., Horalík D. Biomed Osteoprotegerin, RANK, RANKL. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2001; 145: 61-4.
Leder B., LeBlanc K., Schoenfeld D., Eastell R., Finkelstein J. Differential effects of androgens and estrogens on bone turnover in normal men. J. Clin. Endocrinol. Metab. 2003; 88: 204-10.
Jilka R.L., Weinstein R.S., Bellido T., Parfitt A.M., Manolagas S.C. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokine. J. Bone Miner Res. 1998; 13: 793-802.
Karsdal M.A., Hjorth P., Henriksen K., Kirkegaard T., Nielsen K.L., Lou H., et al. Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J. Biol. Chem. 2003; 278: 44975-87.
Mosialou I., Shikhel S., Liu J.M., Maurizi A., Luo N., He Z., et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017; 543: 385-90.
Toraldo G., Roggia C., Qian W.P., Pacifici R., Weitzmann M.N. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor κ B ligand and tumor necrosis factor α from T cells. Proc. Natl. Acad. Sci. USA. 2003; 100: 125-30.
Khapli S.M., Mangashetti L.S., Yogesha S.D., Wani M.R. IL-3 acts directly on osteoclast precursors and irreversibly inhibits receptor activator of NF-kappa B ligand-induced osteoclast differentiation by diverting the cells to macrophage lineage. J. Immunol. 2003; 171: 142-51.
Fox S.W., Chambers T.J. Commun. Interferon-gamma directly inhibits TRANCE-induced osteoclastogenesis. Biochem. Biophys. Res. 2000; 276: 868-72.
Walsh M.C., Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front. Immunol. 2014; 5: 511.
Bordin L., Priante G., Musacchio E., Giunco S., Tibaldi E., Clari G., Baggio B. Arachidonic acid-induced IL-6 expression is mediated by PKC α activation in osteoblastic cells. Biochemistry. 2003; 42: 4485-91.
Yates K.E., Troulis M.J., Kaban L.B., Glowacki J. IGF-1, TGF-β, and BMP-4 are expressed during distraction osteogenesis of the pig mandible. Int J. Oral Maxillofac. Surg. 2002; 31: 173-8.
Friedman M.S., Long M.W., Hankenson K.D. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J. Cell Biochem. 2006; 98: 538-54.
Soysa N.S., Alles N., Aoki K., Ohya K. Osteoclast formation and differentiation: an overview. J. Med. Dent. Sci. 2012; 59: 65-74.
Grčeviç D., Sun-Kyeong L., Marušiç A., Lorenzo J.A. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. J. Immunol. 2000; 165: 4231-38.
Shinoda K., Sugiyama E., Taki H., Harada S., Mino T., Maruyama M., Kobayashi M. Resting T cells negatively regulate osteoclast generation from peripheral blood monocytes. Bone. 2003; 33: 711-20.
Rauner M., Sipos W., Pietschmann P. Osteoimmunology. Int Arch. Allergy Immunol. 2007; 143: 31-48.
Fierro F.A., Nolta J., Adamopoulos I.E. Concise Review: Stem Cells in Osteoimmunology. Stem. Cells. 2017; 35(6): 1461-67. doi: 10.1002/stem.2625.
Akashi K., Traver D., Miyamoto T. Weissman I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000; 404: 193-97.
Bain B.J. What is a promonocyte? Am. J. Hematol. 2013; 88: 919.
Calvi L.M., Bromberg O., Rhee Y., Weber J.M., Smith J.N., Basil M.J., et al. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood. 2012; 119: 2489-99.
Kronenberg H.M. PTH signaling and hematopoiesis. 1st Int Conf Osteoimmunology, 2006, A15.
Baghaei K., Hashemi S.M., Tokhanbigli S., Asadi R.A., Assadzadeh-Aghdaei H., Sharifian A., Zali M.R. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol. Hepatol. Bed. Bench. 2017; 10: 208-13.
Dimitriou R., Tsiridis E., Giannoudis P.V. Current concepts of molecular aspects of bone healing. Injury. 2005; 36: 1392-404.
Tosounidis T., Kontakis G., Nikolaou V., Papathanassopoulos A., Giannoudis P.V. Fracture healing and bone repair: an update. Trauma. 2009; 11: 145-56.
Caplan A.I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol. 2007; 213: 41-7.
Liu W.H., Liu J.J., Wu, J., Zhang L.L., Liu F., Yin, L., Zhang M.M., and Yu B. Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin10 and the JAK1/STAT3 signaling pathway. PLoS One. 2013; 8: e55487.
Luk F., Carreras-Planella L., Korevaar S.S. Inflammatory Conditions Dictate the Effect of Mesenchymal Stem or Stromal Cells on B Cell Function. Front. Immunol. 2017; 8: 1042.
Yagi H., Soto-Gutierrez A., Parekkadan B., Kitagawa Y., Tompkins R.G., Kobayashi N. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant. 2010; 19: 667-79.
Raicevic G., Najar M., Najimi M.E., Taghdouini A., van Grunsven L.A., Sokal E. Influence of inflammation on the immunological profile of adult-derived human liver mesenchymal stromal cells and stellate cells. Cytotherapy. 2015; 17: 174-218.
Zimmermann J.A., Hettiaratchi M.H., McDevitt T.C. Enhanced Immunosuppression of T Cells by Sustained Presentation of Bioactive Interferon-γ Within Three-Dimensional Mesenchymal Stem Cell Constructs. Stem. Cells Transl. Med. 2017; 6(1): 223-37.
Takeda K., Akira S. TLR signaling pathways. Semin. Immunol. 2004; 16: 3-9.
Elshabrawy H.A., Essani A.E., Szekanecz Z., Fox D.A., Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev. 2017;16:103-13.
Nishimura K., Shindo S., Movila A., Kayal R., Abdullah A., Savitri I.J., et al. TRAP-positive osteoclast precursors mediate ROS/NO-dependent bactericidal activity via TLR4. Free Radic Biol. Med. 2016; 97: 330-41.
Ohlsson C., Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26:69-74.
Peterson C.T., Sharma V., Elmén L., Peterson S.N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin. Exp. Immunol. 2015; 179:363-77.
Weaver C.M., Martin B.R., Nakatsu C.H., Armstrong A.P., Clavijo A., McCabe L.D., et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J. Agric. Food Chem. 2011; 59:6501-10.
Jones M.L, Martoni C.J., Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab. 2013; 98: 944-91.