1. Aertsen A.M., Gerstein G.L., Habib M.K., Palm G. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 1989; 61(5): 900–17.
2. Van den Heuvel M.P., Mandl R.C., Kahn R.S., Hulshoff Pol H.E. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 2009; 30(10): 3127–41.
3. Селиверстова Е.В., Селиверстов Ю.А., Коновалов Р.Н., Иллариошкин С.Н. Функциональная магнитно-резонансная томография покоя: новые возможности изучения физиологии и патологии мозга. Анналы клинической и экспериментальной неврологии. 2013; 7(4): 39–44.
4. Lowe M.J., Dzemidzic M., Lurito J.T., Mathews V.P., Phillips M.D. Correlations in low-frequency BOLD fluctuations reflect corticocortical connections. Neuroimage. 2000; 12(5): 582–7.
5. Honey C.J., Sporns O., Cammoun L., Gigandet X., Thiran J.P., Meuli R. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U S A. 2009; 106(6): 2035–40.
6. Hermundstad A.M., Bassett D.S., Brown K.S., Aminoff E.M., Clewett D., Freeman S. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. U S A. 2013; 110(15): 6169–74.
7. Wang Z., Chen L.M., Négyessy L., Friedman R.M., Mishra A., Gore J.C. et al. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron. 2013; 78(6): 1116–26.
8. Johnston J.M., Vaishnavi S.N., Smyth M.D., Zhang D., He B.J., Zempel J.M. et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J. Neurosci. 2008; 28(25): 6453–8.
9. Damoiseaux J.S., Rombouts S.A., Barkhof F., Scheltens P., Stam C.J., Smith S.M. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA. 2006; 103(37): 13848–53.
10. Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA. 2003; 100(1): 253–8.
11. Biswal B.B., Van Kylen J., Hyde J.S. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997; 10(4-5): 165–70.
12. Cordes D., Haughton V., Carew J.D., Arfanakis K., Maravilla K. Hierarchical clustering to measure connectivity in fMRI restingstate data. Magn. Reson. Imaging. 2002; 20(4): 305–17.
13. Cordes D., Haughton V.M., Arfanakis K., Wendt G.J., Turski P.A., Moritz C.H. et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 2000; 21(9): 1636–44.
14. De Luca M., Smith S., De Stefano N., Federico A., Matthews P.M. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp. brain Res. 2005; 167(4): 587–94.
15. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007; 8(9): 700–11.
16. Lowe M.J., Mock B.J., Sorenson J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998; 7(2): 119–32.
17. Di X., Gohel S., Kim E.H., Biswal B.B. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front. Hum. Neurosci. 2013; 7: 493.
18. Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N Y Acad. Sci. 2008; 1124: 1–38.
19. Crone J.S., Schurz M., Höller Y., Bergmann J., Monti M., Schmid E. et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage. 2015; 110: 101–9.
20. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007; 27(9): 2349–56.
21. Culpepper L. Neuroanatomy and physiology of cognition. J. Clin. Psychiatry. 2015; 76(7): e900.
22. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echoplanar MRI. Magn. Reson. Med. 1995; 34(4): 537–41.
23. Jiang T., He Y., Zang Y., Weng X. Modulation of functional connectivity during the resting state and the motor task. Hum. Brain Mapp. 2004; 22(1): 63–71.
24. Friston K.J., Frith C.D., Liddle P.F., Frackowiak R.S. Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 1993; 13(1): 5–14.
25. Beckmann C.F., DeLuca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R Soc. Lond B Biol. Sci. 2005; 360(1457): 1001–13.
26. Calhoun V.D., Adali T., Pearlson G.D., Pekar J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001; 14(3): 140–51.
27. Van den Heuvel M., Mandl R., Hulshoff Pol H. Normalized cut group clustering of resting-state FMRI data. PLoS One. 2008; 3(4): e2001.
28. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009; 10(3): 186–98.
29. Achard S., Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 2007; 3(2): e17.
30. Van den Heuvel M.P., Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011; 31(44): 15775–86.
31. Van den Heuvel M.P., Sporns O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 2013; 33(36): 14489–500.
32. Kubicki S., Herrmann W.M., Fichte K., Freund G. Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr. Neuropsychopharmakol. 1979; 12(2): 237–45.
33. Hughes J.R., John E.R. Conventional and quantitative electroencephalography in psychiatry. J. Neuropsychiatry Clin. Neurosci. 1999; 11(2): 190–208.
34. Mantini D., Perrucci M.G., Del Gratta C., Romani G.L., Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA. 2007; 104(32): 13170–5.
35. Kobayashi M., Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003; 2(3): 145–56.
36. Ferbert A., Priori A., Rothwell J.C., Day B.L., Colebatch J.G., Marsden C.D. Interhemispheric inhibition of the human motor cortex. J. Physiol. 1992; 453: 525–46.
37. Thut G., Pascual-Leone A. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr. 2010; 22(4): 219–32.
38. Fox M.D., Halko M.A., Eldaief M.C., Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage. 2012; 62(4): 2232–43.
39. Johnen V.M., Neubert F.X., Buch E.R., Verhagen L., O’Reilly J.X., Mars R.B. et al. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. Elife. 2015; 4.
40. Fox M., Pascual-Leone A. Intrinsic Functional Connectivity with the Subgenual Cingulate Predicts Clinical Efficacy of TMS Targets for Depression (P01.188). Neurology. 2012; 78(Meeting Abstracts 1): P01.188–P01.188.
41. Vercammen A., Knegtering H., den Boer J.A., Liemburg E.J., Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol. Psychiatry. 2010; 67(10): 912-8.
42. Freitas C., Fregni F., Pascual-Leone A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr. Res. 2009; 108(1-3): 11–24.
43. Vercammen A., Knegtering H., Liemburg E.J., den Boer J.A., Aleman A. Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. J. Psychiatr. Res. 2010; 44(11): 725–31.
44. Thompson P.M., Ge T., Glahn D.C., Jahanshad N., Nichols T.E. Genetics of the connectome. Neuroimage. 2013; 80: 475–88.
45. Chiang M.C., Barysheva M., Shattuck D.W., Lee A.D., Madsen S.K., Avedissian C. et al. Genetics of brain fiber architecture and intellectual performance. J. Neurosci. 2009; 29(7): 2212–24.
46. Kochunov P., Glahn D.C., Lancaster J.L., Winkler A.M., Smith S., Thompson P.M. et al. Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage. 2010; 53(3): 1109–16.
47. Kochunov P., Glahn D.C., Nichols T.E., Winkler A.M., Hong E.L., Holcomb H.H. et al. Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Front. Neurosci. 2011; 5: 120.
48. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003; 112(2): 257–69.
49. Chiang M.C., Barysheva M., Toga A.W., Medland S.E., Hansell N.K., James M.R. et al. BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage. 2011; 55(2): 448–54.
50. Braskie M.N., Jahanshad N., Stein J.L., Barysheva M., Johnson K., McMahon K.L. et al. Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. J. Neurosci. 2012; 32(17): 5964–72.
51. Jahanshad N., Kohannim O., Hibar D.P., Stein J.L., McMahon K.L., de Zubicaray G.I. et al. Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc. Natl. Acad. Sci. U S A. 2012; 109(14): E851–9.
52. Glahn D.C., Winkler A.M., Kochunov P., Almasy L., Duggirala R., Carless M.A. et al. Genetic control over the resting brain. Proc. Natl. Acad. Sci. U S A. 2010; 107(3): 1223–8.
53. Fornito A., Zalesky A., Bassett D.S., Meunier D., Ellison-Wright I., Yücel M. et al. Genetic influences on cost-efficient organization of human cortical functional networks. J. Neurosci. 2011; 31(9): 3261–70.
54. Van den Heuvel M.P., van Soelen I.L., Stam C.J., Kahn R.S., Boomsma D.I., Hulshoff Pol H.E. Genetic control of functional brain network efficiency in children. Eur. Neuropsychopharmacol. 2013; 23(1): 19–23.
55. Solé-Padullés C., Castro-Fornieles J., de la Serna E., Calvo R., Baeza I., Moya J. et al. Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex. Dev. Cogn. Neurosci. 2015; 17: 35–44.
56. Scheinost D., Finn E.S., Tokoglu F., Shen X., Papademetris X., Hampson M. et al. Sex differences in normal age trajectories of functional brain networks. Hum. Brain Mapp. 2015; 36(4): 1524–35.
57. Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U S A. 2004; 101(13): 4637–42.
58. Rombouts S.A., Barkhof F., Goekoop R., Stam C.J., Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 2005; 26(4): 231–9.
59. Greicius M.D., Flores B.H., Menon V., Glover G.H., Solvason H.B., Kenna H. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry. 2007; 62(5): 429–37.
60. Liu Y., Liang M., Zhou Y., He Y., Hao Y., Song M. et al. Disrupted small-world networks in schizophrenia. Brain. 2008; 131(Pt.4): 945–61.
61. Lowe M.J., Beall E.B., Sakaie K.E., Koenig K.A., Stone L., Marrie R.A. et al. Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum. Brain Mapp. 2008; 29(7): 818–27.
62. Mohammadi B., Kollewe K., Samii A., Krampfl K., Dengler R., Münte T.F. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp. Neurol. 2009; 217(1): 147–53.
63. Supekar K., Menon V., Rubin D., Musen M., Greicius M.D. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 2008; 4(6): e1000100.
64. Bassett D.S., Bullmore E., Verchinski B.A., Mattay V.S., Weinberger D.R., Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 2008; 28(37): 9239–48.
65. Bluhm R.L., Miller J., Lanius R.A., Osuch E.A., Boksman K., Neufeld R.W. et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 2007; 33(4): 1004–12.
66. Bharath R.D., Biswal B.B., Bhaskar M.V., Gohel S., Jhunjhunwala K., Panda R. et al. Repetitive transcranial magnetic stimulation induced modulations of resting state motor connectivity in writer’s cramp. Eur. J. Neurol. 2015; 22(5): 796–805, e53–4.
67. Seliverstov Y., Seliverstova E., Prikhodko D., Klyushnikov S., Konovalov R., Krotenkova M. et al. E21 Resting-state Functional Mri: Studying Default Mode Network In Healthy Controls Versus Early Manifest Patients With Huntington’s Disease. J. Neurol. Neurosurg. Psychiatry. 2014; 85(Suppl.1): A43–4.
68. Seliverstov Y.A., Seliverstova E.V., Klyushnikov S.A., Konovalov R.N., Illarioshkin S.N. First experience of performing resting-state functional MRI in Russia: Studying controls versus early manifest Huntington’s disease patients. In: Conference proceedings. MDS 18th International Congress of Parkinson’s Disease and Movement Disorders. June 8-12, 2014. Stockholm, Sweden; 2014; 29(Suppl. 1): 247.
69. Seliverstova E.V., Seliverstov Y.A., Konovalov R.N., Krotenkova M.V., Illarioshkin S.N. Resting State fMRI in Assessing Changes of DMN Activation Pattern in Neurodegenerative Diseases. In: Poster Presentation Abstracts of 20th Symposium Neuroradiologicum (WFNRS). Istanbul; 2014; 56(Suppl 1): 452.
70. Селивёрстова Е.В., Селивёрстов Ю.А., Коновалов Р.Н., Кротенкова М.В., Иллариошкин С.Н. Реорганизация сети пассивного режима работы головного мозга у пациентов с болезнью Паркинсона: анализ индивидуальных компонент по данным фМРТ покоя. Анналы клинической и экспериментальной неврологии. 2015; 9(2): 4–9.
71. Селиверстов Ю.А., Селиверстова Е.В., Коновалов Р.Н., Клюшников С.А., Кротенкова М.В., Иллариошкин С.Н. Клинико-нейровизуализационный анализ болезни Гентингтона с использованием функциональной магнитно-резонансной томографии покоя. Неврологический журнал. 2015; 20(3): 11–21.
72. Шарова Е.В., Гаврон А.А., Абдулаев А.А., Смирнов А.С., Фадеева Л.М., Челяпина М.В. и др. Опыт фМРТ-анализа состояния покоя (resting state) здоровых испытуемых с использованием программного обеспечения FSL. Медицинская визуализация. 2015; (4): 6–17.