Heiss W.D., Kidwell C.S. Imaging for prediction of functional outcome and assessment of recovery in ischemic stroke. Stroke. 2014; 45(4): 1195-1201.
Mergenthaler P., Dirnagl U., Kunz A. Ischemic stroke: Basic pathophysiology and clinical implication. In: Pfaff D.W., Volkow N.D., eds. Neuroscience in the 21st Century. From basic to clinical. 2nd ed. New York: Springer; 2016: 3385-405.
Grefkes C., Fink G.R. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011; 134(5): 1264-76.
Jiang L., Xu H., Yu C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plast. 2013; 2013: 924192.
Takeuchi N., Izumi S.I. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012; 2012: 359728.
Madhavan S., Rogers L.M., Stinear J.W. A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive. Eur. J. Neurosci. 2010; 32(6): 1032-9. https://doi.org/10.1111/j.1460-9568.2010.07364.x
Takeuchi N., Tada T., Chuma T., Matsuo Y., Ikoma K. Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke. Stroke. 2007; 38(5): 1551-6.
Dipasquale O., Cercignani M. Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions. Funct. Neurol. 2016; 31(4): 191-203.
Meier J., Tewarie P., Hillebrand A., Douw L., van Dijk B.W., Stufflebeam S.M. et al. A mapping between structural and functional brain networks. Brain Connect. 2016; 6(4): 298-311.
Park C.H., Chang W.H., Ohn S.H., Kim S.T., Bang O.Y., Pascual-Leone A. et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011; 42(5): 1357-62. https://doi.org/10.1161/strokeaha.110.596155
Rehme A.K., Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J. Physiol. 2013; 591(1): 17-31.
Stinear C., Byblow W. Targeting viable brain networks to improve outcomes after stroke. In: Carey L.M., ed. Stroke rehabilitation. Insights from neuroscience and imaging. Oxford: Oxford University Press; 2012: 231-9.
Varsou O., Macleod M.J., Schwarzbauer C. Functional connectivity magnetic resonance imaging in stroke: an evidence-based clinical review. Int. J. Stroke. 2014; 9(2): 191-8.
Westlake K.P., Nagarajan S.S. Functional connectivity in relation to motor performance and recovery after stroke. Front. Syst. Neurosci. 2011; 5: 8.
Thiel A., Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke. 2014; 46(1): 296-301.
Li W., Li Y., Zhu W., Chen X. Changes in brain functional network connectivity after stroke. Neural Regen. Res. 2014; 9(1): 51-60.
Collin G., van den Heuvel M.P. The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist. 2013; 19(6): 616-28.
Haken H. The Brain as a synergetic and physical system. In: Pelster A., Wunner G., eds. Selforganization in complex systems: The past, present, and future of synergetics. Proceedings of the International Symposium, Hanse Institute of Advanced Studies, Delmenhorst, Germany, November 13-16, 2012. Delmenhorst: Springer; 2016: 147-63.
Bell P.T., Shine J.M. Estimating large-scale network convergence in the human functional connectome. Brain Connect. 2015; 5(9): 565-74.
Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009; 10(3): 186-98.
Petersen S.E., Sporns O. Brain networks and cognitive architectures. Neuron. 2015; 88(1): 207-19.
van den Heuvel M.P., Sporns O. Network hubs in the human brain. Trends Cogn. Sci. 2013; 17(12): 683-96.
van den Heuvel M.P., Bullmore E.T., Sporns O. Comparative connectomics. Trends Cogn. Sci. 2016; 20(5): 345-61.
Mears D., Pollard H.B. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J. Neurosci. Res. 2016; 94(6): 590-605.
Fornito A., Bullmore E.T. Connectomics: A new paradigm for understanding brain disease. Eur. Neuropsychopharmacol. 2015; 25(5): 733-48.
Sporns O., Betzel R.F. Modular brain networks. Annu. Rev. Psychol. 2016; 67(1): 613-40.
Sporns O. Towards network substrates of brain disorders. Brain. 2014; 137(8): 2117-8.
Pessoa L. The Cognitive-emotional brain. From interactions to integration. The MIT Press; 2013.
Thompson W.H., Brantefors P., Fransson P. From static to temporal network theory - applications to functional brain connectivity. 2016; doi: http://dx.doi.org/10.1101/096461
Bazan P.R., Biazoli C.E. Jr., Sato J.R., Amaro E. Jr. Motor readiness increases brain connectivity between default-mode network and motor cortex: impact on sampling resting periods from fMRI event-related studies. Brain Connect. 2015; 5(10): 631-40.
Caeyenberghs K., Leemans A. Hemispheric lateralization of topological organization in structural brain networks. Hum. Brain Mapp. 2014; 35(9): 4944-57.
Dinomais M., Chinier E., Richard I., Ricalens E., Aube C., N’Guyen The Tich S. et al. Hemispheric asymmetry of supplementary motor area proper: a functional connectivity study of the motor network. Motor Control. 2016; 20(1): 33-49.
Friston K.J. Functional and effective connectivity: a review. Brain Connect. 2011; 1(1): 13-36.
Snyder A.Z. Intrinsic brain activity and resting state networks. In: Pfaff D.W., N.D. Volkow N.D., eds. Neuroscience in the 21st Century. From basic to clinical. 2nd ed. New York: Springer; 2016: 1625-76.
Gurcan O. Effective connectivity at synaptic level in humans: a review and future prospects. Biol. Cybern. 2014; 108(6): 713-33.
Edlow B.L., McNab J.A., Witzel T., Kinney H.C. The structural connectome of the human central homeostatic network. Brain Connect. 2016; 6(3): 187-200.
Ward N.S. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. 2003; 126(6): 1430-48.
Almeida S.R., Vicentini J., Bonilha L., De Campos B.M., Casseb R.F., Min L.L. Brain connectivity and functional recovery in patients with ischemic stroke. J. Neuroimaging. 2017; 27(1): 65-70.
Kelly C., Castellanos F.X. Strengthening connections: functional connectivity and brain plasticity. Neuropsychol. Rev. 2014; 24(1): 63-76.
D’Alberto N., Funnell M., Potter A., Garavan H. A split-brain case study on the hemispheric lateralization of inhibitory control. Neuropsychologia. 2017; 99: 24-9.
Lefebvre S., Dricot L., Laloux P., Desfontaines P., Evrard F., Peeters A. et al. Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience. 2017; 340: 424-35.
Stinear C.M., Byblow W.D. Stroke. In: Chen R., Rothwell J.C., eds. Cortical connectivity. Brain stimulation for assessing and modulating cortical connectivity and function. Heidelberg: Springer; 2012: 279-304.
Tamas Kincses Z., Johansen-Berg H., Tomassini V., Bosnell R., Matthews P.M., Beckmann C.F. Model-free characterization of brain functional networks for motor sequence learning using fMRI. Neuroimage. 2008; 39(4): 1950-8.
Corbetta M. Functional connectivity and neurological recovery. Dev. Psychobiol. 2012; 54(3): 239-53.
Liu J., Qin W., Zhang J., Zhang X., Yu C. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke. 2015; 46(4): 1045-51.
Wadden K.P., Woodward T.S., Metzak P.D., Lavigne K.M., Lakhani B., Auriat A.M. et al. Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke. Behav. Brain Res. 2015; 286: 136-45.