Динамика индикаторов эндотелиальной дисфункции при ожирении у детей
DOI: https://doi.org/10.46563/1560-9561-2022-25-2-84-90
Аннотация
Введение. Конституционально-экзогенное ожирение (КЭО) относится к ряду значимых медико-социальных проблем современного мира, принимает масштабы эпидемии и лидирует среди алиментарно-зависимой патологии у детей. Цель работы - изучение изменений индикаторов эндотелиальной дисфункции при различной выраженности ожирения у детей. Материалы и методы. Комплексно обследованы 126 детей в возрасте 6-17 лет, из них 110 пациентов с различной выраженностью КЭО. В сыворотке крови определяли содержание медиаторов эндотелиальной дисфункции: оксида азота, эндотелина-1, лептина, гомоцистеина, молекул межклеточной адгезии и адгезии сосудистых клеток-1, антигена ингибитора активатора плазминогена тканевого типа, фактора Виллебранда и его антигена. Результаты. Установлены закономерности изменений концентраций указанных соединений в крови в зависимости от возраста больных и степени ожирения, отражающие нарушения функционального состояния эндотелиальной системы. Заключение. Индикаторы эндотелиальной дисфункции могут служить критериями её выраженности, их выявление позволит оптимизировать раннюю диагностику и определить объём своевременной терапии.
Об авторах
Смирнов Иван ЕвгеньевичФисенко Андрей Петрович
Кучеренко Алла Георгиевна
Смирнова Галина Ивановна
Постникова Екатерина Владимировна
Список литературы
Tagi V.M., Chiarelli F. Obesity and insulin resistance in children. Curr. Opin. Pediatr. 2020; 32(4): 582-8. https://doi.org/10.1097/MOP.0000000000000913
Staiano A.E., Katzmarzyk P.T. Increases in adiposity among children and adolescents over time: Moving beyond BMI. Am. J. Clin. Nutr. 2021; 114(4): 1275-6. https://doi.org/10.1093/ajcn/nqab265
Stierman B., Ogden C.L., Yanovski J.A., Martin C.B., Sarafrazi N., Hales C.M. Changes in adiposity among children and adolescents in the United States, 1999-2006 to 2011-2018. Am. J. Clin. Nutr. 2021; 114(4): 1495-504. https://doi.org/10.1093/ajcn/nqab237
Twig G., Yaniv G., Levine H., Leiba A., Goldberger N., Derazne E., et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N. Engl. J. Med. 2016; 374(25): 2430-40. https://doi.org/10.1056/nejmoa1503840
Hruska V., Ambrose T., Darlington G., Ma D.W.L., Haines J., Buchholz A.C. Stress is associated with adiposity in parents of young children. Obesity (Silver Spring). 2020; 28(3): 655-9. https://doi.org/10.1002/oby.22710
Agarwal A.K. Spice up your life: adipose tissue and inflammation. J. Lipids. 2014; 2014: 182575. https://doi.org/10.1155/2014/182575
Koenen M., Hill M.A., Cohen P., Sowers J.R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 2021; 128(7): 951-68. https://doi.org/10.1161/circresaha.121.318093
Kereliuk S.M., Dolinsky V.W. Recent experimental studies of maternal obesity, diabetes during pregnancy and the developmental origins of cardiovascular disease.Int. J. Mol. Sci. 2022; 23(8): 4467. https://doi.org/10.3390/ijms23084467
Foster B.A., Reynolds K., Callejo-Black A., Polensek N., Weill B.C. Weight outcomes in children with developmental disabilities from a multidisciplinary clinic. Res. Dev. Disabil. 2021; 108: 103809. https://doi.org/10.1016/j.ridd.2020.103809
El-Yazbi A.F., Oudit G.Y. Adipose biology, cardiovascular, and cardiometabolic disease: novel insights and new targets for intervention. Clin. Sci. (Lond). 2020; 134(12): 1473-4. https://doi.org/10.1042/CS20200816
Kessler Ch. Pathophysiology of Obesity. Nurs. Clin. North Am. 2021; 56(4): 465-78. https://doi.org/10.1016/j.cnur.2021.08.001
Тутельян В.A., Батурин А.К., Конь И.Я. Распространенность ожирения и избыточной массы тела среди детского населения РФ: мультицентровое исследование. Педиатрия. Журнал им. Г.Н. Сперанского. 2014; 93(5): 28-31.
Мартынова И.Н., Винярская И.В., Терлецкая Р.Н., Постникова Е.В., Фролова Г.С. Вопросы истинной заболеваемости и распространенности ожирения среди детей и подростков. Российский педиатрический журнал. 2016; 19(1): 23-8. https://doi.org/10.18821/1560-9561-2016-19(1)-23-28
Whittle A.J., Jiang M., Peirce V., Relat J., Virtue S., Ebinuma H., et al. Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nat.Commun. 2015; 6: 8951. https://doi.org/10.1038/ncomms9951
Pigeyre M., Yazdi F.T., Kaur Y., Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. (Lond.). 2016; 130(12): 943-86. https://doi.org/10.1042/cs20160136
Беляева И.А., Бомбардирова Е.П., Смирнов И.Е., Харитонова Н.А. Нейротрофические аспекты вскармливания недоношенных детей. Российский педиатрический журнал. 2015; 18(5): 30-7
Ugwoke C.K., Cvetko E., Umek N. Skeletal muscle microvascular dysfunction in obesity-related insulin resistance: pathophysiological mechanisms and therapeutic perspectives.Int. J. Mol. Sci. 2022; 23(2): 847. https://doi.org/10.3390/ijms23020847
Li M., Qian M., Kyler K., Xu J. Adipose tissue-endothelial cell interactions in obesity-induced endothelial dysfunction. Front. Cardiovasc. Med. 2021; 8: 681581. https://doi.org/10.3389/fcvm.2021.681581
Altabas V., Biloš L.S.K. The role of endothelial progenitor cells in atherosclerosis and impact of anti-lipemic treatments on endothelial repair.Int. J. Mol. Sci. 2022; 23(5): 2663. https://doi.org/10.3390/ijms23052663
Скворцова В.А., Хаджиева М.В., Боровик Т.Э., Бушуева Т.В., Смирнов И.Е., Маянский Н.А. и др. Адипокины и гормоны у детей младшего школьного возраста с нормальной и избыточной массой тела. Российский педиатрический журнал. 2019; 22(3): 137-43. https://doi.org/10.18821/1560-9561-2019-22-3-137-143
Kawai T., Autieri M.V., Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021; 320(3): C375-91. https://doi.org/10.1152/ajpcell.00379.2020
Zhang Z., Adamo K.B., Ogden N., Goldfield G.S., Okely A.D., Kuzik N., et al. Associations between sleep duration, adiposity indicators, and cognitive development in young children. Sleep Med. 2021; 82: 54-60. https://doi.org/10.1016/j.sleep.2021.03.037
Martinez-Santibañez G., Lumeng C.N. Macrophages and the regulation of adipose tissue remodeling. Annu. Rev. Nutr. 2014; 34: 57-76. https://doi.org/10.1146/annurev-nutr-071812-161113
Lemoine A.Y., Ledoux S., Larger E. Adipose tissue angiogenesis in obesity. Thromb. Haemost. 2013; 110(4): 661-8. https://doi.org/10.1160/TH13-01-0073
Marcelin G., Silveira A.L.M., Martins L.B., Ferreira A.V., Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Invest. 2019; 129(10): 4032-40. https://doi.org/10.1172/JCI129192
Crewe C., An Y.A., Scherer P.E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 2017; 127(1): 74-82. https://doi.org/10.1172/JCI88883
Pellegrinelli V., Rodriguez-Cuenca S., Rouault C., Figueroa-Juarez E., Schilbert H., Virtue S., et al. Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nat. Metab. 2022; 4(4): 476-94. https://doi.org/10.1038/s42255-022-00561-5
Boutagy N.E., Singh A.K., Sessa W.C. Targeting the vasculature in cardiometabolic disease. J. Clin. Invest. 2022; 132(6): e148556. https://doi.org/10.1172/JCI148556
Cyr A.R., Huckaby L.V., Shiva S.S., Zuckerbraun B.S. Nitric oxide and endothelial dysfunction. Crit. Care. Clin. 2020; 36(2): 307-21. https://doi.org/10.1016/j.ccc.2019.12.009
Müller M.M., Griesmacher A. Markers of endothelial dysfunction. Clin. Chem. Lab. Med. 2000; 38(2): 77-85. https://doi.org/10.1515/CCLM.2000.013
Taneja G., Sud A., Pendse N., Panigrahi B., Kumar A., Sharma A.K. Nano-medicine and vascular endothelial dysfunction: options and delivery strategies. Cardiovasc. Toxicol. 2019; 19(1): 1-12. https://doi.org/10.1007/s12012-018-9491-x
Maggio A.B.R., Farpour-Lambert N.J., Aggoun Y., Galan K., Montecucco F., Mach F., et al. Serum cardiovascular risk biomarkers in pre-pubertal obese children. Eur. J. Clin. Invest. 2018; 48(9): e12995. https://doi.org/10.1111/eci.12995
Salamt N., Muhajir M., Aminuddin A., Ugusman A. The effects of exercise on vascular markers and C-reactive protein among obese children and adolescents: An evidence-based review. Bosn. J. Basic Med. Sci. 2020; 20(2): 149-56. https://doi.org/10.17305/bjbms.2019.4345
Genovesi S., Parati G. Cardiovascular risk in children: focus on pathophysiological aspects.Int. J. Mol. Sci. 2020; 21(18): 6612. https://doi.org/10.3390/ijms21186612
Cote A.T., Harris K.C., Panagiotopoulos C., Sandor G.G., Devlin A.M. Childhood obesity and cardiovascular dysfunction. J. Am. Coll. Cardiol. 2013; 62(15): 1309-19. https://doi.org/10.1016/j.jacc.2013.07.042
Lo M.H., Lin I.C., Lu P.C., Huang C.F., Chien S.J., Hsieh K.S., et al. Evaluation of endothelial dysfunction, endothelial plasma markers, and traditional metabolic parameters in children with adiposity. J. Formos. Med. Assoc. 2019; 118(Pt. 1): 83-91. https://doi.org/10.1016/j.jfma.2018.01.007
Rastogi S., Rastogi D. The epidemiology and mechanisms of lifetime cardiopulmonary morbidities associated with pre-pregnancy obesity and excessive gestational weight gain. Front. Cardiovasc. Med. 2022; 9: 844905. https://doi.org/10.3389/fcvm.2022.844905
Niu Y., Zhao X., He H., Mao X., Sheng J., Zou J., et al. The effect of different adiposity factors on insulin resistance in obese children and adolescents. Clin. Endocrinol. (Oxf). 2021; 94(6): 949-55. https://doi.org/10.1111/cen.14435
Kwaifa I.K., Bahari H., Yong Y.K., Noor S.M. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. Biomolecules. 2020; 10(2): 291. https://doi.org/10.3390/biom10020291
Adelantado-Renau M., Esteban-Cornejo I., Mora-Gonzalez J., Plaza-Florido A., Rodriguez-Ayllon M., Maldonado J., et al. Neurotrophic factors and brain health in children with overweight and obesity: The role of cardiorespiratory fitness. Eur. J. Sport Sci. 2022; 1-12. https://doi.org/10.1080/17461391.2022.2044912
Bruyndonckx L., Hoymans V.Y., Van Craenenbroeck A.H., Vissers D.K., Vrints C.J., Ramet J., et al. Assessment of endothelial dysfunction in childhood obesity and clinical use. Oxid. Med. Cell. Longev. 2013; 2013: 174782. https://doi.org/10.1155/2013/174782
Xie Y., Liu L. Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J. Transl. Med. 2022; 20(1): 141. https://doi.org/10.1186/s12967-021-03220-7
Vanhoutte P.M. Endothelial dysfunction in obesity. Ann. Pharm. Fr. 2013; 71(1): 42-50. https://doi.org/10.1016/j.pharma.2012.10.003
Balta S. Endothelial dysfunction and inflammatory markers of vascular disease. Curr. Vasc. Pharmacol. 2021; 19(3): 243-9. https://doi.org/10.2174/1570161118666200421142542
Phan H.T.T., Borca F., Cable D., Batchelor J., Davies J.H., Ennis S. Automated data cleaning of paediatric anthropometric data from longitudinal electronic health records: protocol and application to a large patient cohort. Sci. Rep. 2020; 10(1): 10164. https://doi.org/10.1038/s41598-020-66925-7
Петеркова В.А., Безлепкина О.Б., Болотова Н.В., Богова Е.А., Васюкова О.В., Гирш Я.В. и др. Клинические рекомендации «Ожирение у детей». Проблемы эндокринологии. 2021; 67(5): 67-83. https://doi.org/10.14341/probl12802
Godo S., Shimokawa H. Endothelial Functions. Arterioscler. Thromb. Vasc. Biol. 2017; 37(9): e108-14. https://doi.org/10.1161/atvbaha.117.309813
Adamczyk A., Matuszyk E., Radwan B., Rocchetti S., Chlopicki S., Baranska M. Toward raman subcellular imaging of endothelial dysfunction. J. Med. Chem. 2021; 64(8): 4396-409. https://doi.org/10.1021/acs.jmedchem.1c00051
Ugusman A., Kumar J., Aminuddin A. Endothelial function and dysfunction: impact of sodium-glucose cotransporter 2 inhibitors. Pharmacol. Ther. 2021; 224: 107832. https://doi.org/10.1016/j.pharmthera.2021.107832
Clyne A.M. Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem. Soc. Trans. 2021; 49(1): 313-25. https://doi.org/10.1042/bst20200611
Virdis A. Endothelial dysfunction in obesity: role of inflammation. High Blood Press. Cardiovasc. Prev. 2016; 23(2): 83-5. https://doi.org/10.1007/s40292-016-0133-8
Rana M.N., Neeland I.J. Adipose tissue inflammation and cardiovascular disease: an update. Curr. Diab. Rep. 2022; 22(1): 27-37. https://doi.org/10.1007/s11892-021-01446-9
Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018; 100: 1-19. https://doi.org/10.1016/j.vph.2017.05.005
Ait-Aissa K., Nguyen Q.M., Gabani M., Kassan A., Kumar S., Choi S.K., et al. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovasc. Diabetol. 2020; 19(1): 136. https://doi.org/10.1186/s12933-020-01107-3
Perdoncin M., Konrad A., Wyner J.R., Lohana S., Pillai S.S., Pereira D.G., et al. A review of miRNAs as biomarkers and effect of dietary modulation in obesity associated cognitive decline and neurodegenerative disorders. Front. Mol. Neurosci. 2021; 14: 756499. https://doi.org/10.3389/fnmol.2021.756499
Genovesi S., Giussani M., Orlando A., Lieti G., Viazzi F., Parati G. Relationship between endothelin and nitric oxide pathways in the onset and maintenance of hypertension in children and adolescents. Pediatr. Nephrol. 2022; 37(3): 537-45. https://doi.org/10.1007/s00467-021-05144-2
Selvaraju V., Ayine P., Fadamiro M., Babu J.R., Brown M., Geetha T. Urinary biomarkers of inflammation and oxidative stress are elevated in obese children and correlate with a marker of endothelial dysfunction. Oxid. Med. Cell Longev. 2019; 2019: 9604740. https://doi.org/10.1155/2019/9604740
Engin A. Endothelial dysfunction in obesity. Adv. Exp. Med. Biol. 2017; 960: 345-79. https://doi.org/10.1007/978-3-319-48382-5_15
Sioen I., Lust E., De Henauw S., Moreno L.A., Jiménez-Pavón D. Associations between body composition and bone health in children and adolescents: a systematic review. Calcif. Tissue.Int. 2016; 99(6): 557-77. https://doi.org/10.1007/s00223-016-0183-x
Tint M.T., Michael N., Sadananthan S.A., Huang J.Y., Khoo C.M., Godfrey K.M., et al. Brown adipose tissue, adiposity, and metabolic profile in preschool children. J. Clin. Endocrinol. Metab. 2021; 106(10): 2901-14. https://doi.org/10.1210/clinem/dgab447
King R.J., Ajjan R.A. Vascular risk in obesity: Facts, misconceptions and the unknown. Diab. Vasc. Dis. Res. 2017; 14(1): 2-13. https://doi.org/10.1177/1479164116675488
Jimenez M.T., Michieletto M.F., Henao-Mejia J. A new perspective on mesenchymal-immune interactions in adipose tissue. Trends. Immunol. 2021; 42(5): 375-88. https://doi.org/10.1016/j.it.2021.03.001
Кожевникова О.В., Смирнов И.Е. Факторы риска сердечно-сосудистой патологии у детей: свойства сосудов и атеросклероз. Российский педиатрический журнал. 2015; 18(4): 36-42
Lawler K., Huang-Doran I., Sonoyama T., Collet T.H., Keogh J.M., Henning E., et al. Leptin-mediated changes in the human metabolome. J. Clin. Endocrinol. Metab. 2020; 105(8): 2541-52. https://doi.org/10.1210/clinem/dgaa251
Obradovic M., Sudar-Milovanovic E., Soskic S., Essack M., Arya S., Stewart A.J., et al. Leptin and obesity: role and clinical implication. Front. Endocrinol. (Lausanne). 2021; 12: 585887. https://doi.org/10.3389/fendo.2021.585887
Seth M., Biswas R., Ganguly S., Chakrabarti N., Chaudhuri A.G. Leptin and obesity. Physiol.Int. 2020; 107(4): 455-68. https://doi.org/10.1556/2060.2020.00038
Zhao S., Kusminski C.M., Elmquist J.K., Scherer P.E. Leptin: less is more. Diabetes. 2020; 69(5): 823-9. https://doi.org/10.2337/dbi19-0018
Genchi V.A., D’Oria R., Palma G., Caccioppoli C., Cignarelli A., Natalicchio A., et al. Impaired leptin signalling in obesity: is leptin a new thermolipokine? Int. J. Mol. Sci. 2021; 22(12): 6445. https://doi.org/10.3390/ijms22126445
La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017; 98: 51-8. https://doi.org/10.1016/j.cyto.2016.10.011
Peng J., Yin L., Wang X. Central and peripheral leptin resistance in obesity and improvements of exercise. Horm. Behav. 2021; 133: 105006. https://doi.org/10.1016/j.yhbeh.2021.105006
Enriori P.J., Sinnayah P., Simonds S.E., Garcia Rudaz C., Cowley M.A. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 2011; 31(34): 12189-97. https://doi.org/10.1523/jneurosci.2336-11.2011
Russo B., Menduni M., Borboni P., Picconi F., Frontoni S. Autonomic nervous system in obesity and insulin-resistance-the complex interplay between leptin and central nervous system.Int. J. Mol. Sci. 2021; 22(10): 5187. https://doi.org/10.3390/ijms22105187
Hernández Morante J.J., Díaz Soler I., Muñoz J.S.G., Sánchez H.P., Barberá Ortega M.D.C., Martínez C.M., et al. Moderate weight loss modifies leptin and ghrelin synthesis rhythms but not the subjective sensations of appetite in obesity patients. Nutrients. 2020; 12(4): 916. https://doi.org/10.3390/nu12040916
Mark A.L., Correia M.L.G., Rahmouni K., Haynes W.G. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J. Hypertens. 2002; 20(7): 1245-50. https://doi.org/10.1097/00004872-200207000-00001
Lu S.C., Akanji A.O. Leptin, obesity, and hypertension: a review of pathogenetic mechanisms. Metab. Syndr. Relat. Disord. 2020; 18(9): 399-405. https://doi.org/10.1089/met.2020.0065
Azzini E., Ruggeri S., Polito A. Homocysteine: its possible emerging role in at-risk population groups.Int. J. Mol. Sci. 2020; 21(4): 1421. https://doi.org/10.3390/ijms21041421
Wang J., You D., Wang H., Yang Y., Zhang D., Lv J., et al. Association between homocysteine and obesity: A meta-analysis. J. Evid. Based. Med. 2021; 14(3): 208-17. https://doi.org/10.1111/jebm.12412
Laha A., Majumder A., Singh M., Tyagi S.C. Connecting homocysteine and obesity through pyroptosis, gut microbiome, epigenetics, peroxisome proliferator-activated receptor gamma, and zinc finger protein 407. Can. J. Physiol. Pharmacol. 2018; 96(10): 971-6. https://doi.org/10.1139/cjpp-2018-0037
Смирнова Г.И., Манкуте Г.Р. Микробиота кишечника и атопический дерматит у детей. Российский педиатрический журнал. 2015; 18(6): 46-53
Yuan X., Chen R., McCormick K.L., Zhang Y., Lin X., Yang X. The role of the gut microbiota on the metabolic status of obese children. Microb. Cell. Fact. 2021; 20(1): 53. https://doi.org/10.1186/s12934-021-01548-9
Valls M.D., Soldado M., Arasa J., Perez-Aso M., Williams A.J., Cronstein B.N., et al. Annexin A2-mediated plasminogen activation in endothelial cells contributes to the proangiogenic effect of adenosine A2A receptors. Front. Pharmacol. 2021; 12: 654104. https://doi.org/10.3389/fphar.2021.654104
Zheng Z., Nakamura K., Gershbaum S., Wang X., Thomas S., Bessler M., et al.Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. J. Clin. Invest. 2020; 130(8): 4348-59. https://doi.org/10.1172/JCI135919
Дополнительные файлы
Для цитирования: Смирнов И.Е., Фисенко А.П., Кучеренко А.Г., Смирнова Г.И., Постникова Е.В. Динамика индикаторов эндотелиальной дисфункции при ожирении у детей. Российский педиатрический журнал. 2022; 25(2): 84–90. https://doi.org/10.46563/15609561-2022-25-2-84-90
For citation: Smirnov I.E., Fisenko A.P., Kucherenko A.G., Smirnova G.I., Postnikova E.V. Dynamics of indicators of endothelial dysfunction in children with obesity. Rossiyskiy pediatricheskiy zhurnal (Russian Pediatric Journal). 2022; 25(2): 84–90. (In Russian). https://doi.org/10.46563/1560-9561-2022-25-2-84-90
Обратные ссылки
- Обратные ссылки не определены

Контент доступен под лицензией Creative Commons Attribution 3.0 License.
ISSN: (Print)
ISSN: (Online)