Нароган М.В., Быченко В.Г., Ушакова Л.В., Амирханова Д.Ю., Рюмина И.И., Артамкина Е.И. и др. Перинатальный артериальный ишемический инсульт: частота, диагностика, варианты клинического течения, ранние исходы. Педиатрия. Журнал им. Г.Н. Сперанского. 2019; 98(2): 35-42. https://doi.org/10.24110/0031-403X-2019-98-2-35-42
Ferriero D.M., Fullerton H.J., Bernard T.J., Billinghurst L., Daniels S.R., Debaun M.R., et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke. 2019; 50(3): e51-96. https://doi.org/10.1161/STR.0000000000000183
Roach G.D. Perinatal arterial ischemic stroke. Neoreviews. 2020; 21(11): 741-8. https://doi.org/10.1542/neo.21-11-e741
Dunbar M., Kirton A. Perinatal stroke. Semin. Pediatr. Neurol. 2019; 32: 100767. https://doi.org/10.1016/J.SPEN.2019.08.003
Sorg A.L., Von Kries R., Klemme M., Gerstl L., Felderhoff-Müser U., Dzietko M. Incidence estimates of perinatal arterial ischemic stroke in preterm- and term-born infants: a National Capture-Recapture Calculation Corrected Surveillance Study. Neonatology. 2021; 118(6): 727-33. https://doi.org/10.1159/000514922
Li C., Miao J.K., Xu Y., Hua Y.Y., Ma Q., Zhou L.L., et al. Prenatal, perinatal and neonatal risk factors for perinatal arterial ischaemic stroke: a systematic review and meta-analysis. Eur. J. Neurol. 2017; 24(8): 1006-15. https://doi.org/10.1111/ENE.13337
Lin B., Zhang Z., Mei Y., Wang C., Xu H., Liu L., et al. Cumulative risk of stroke recurrence over the last 10 years: a systematic review and meta-analysis. Neurol. Sci. 2021; 42(1): 61-71. https://doi.org/10.1007/s10072-020-04797-5/tables/4
Roy B., Arbuckle S., Walker K., Morgan C., Galea C., Badawi N., et al. The role of the placenta in perinatal stroke: a systematic review. J. Child Neurol. 2020; 35(11): 773-83. https://doi.org/10.1177/0883073820929214
Rattani A., Lim J., Mistry A.M., Prablek M.A., Roth S.G., Jordan L.C., et al. Incidence of epilepsy and associated risk factors in perinatal ischemic stroke survivors. Pediatr. Neurol. 2019; 90: 44-55. https://doi.org/10.1016/j.pediatrneurol.2018.08.025
Kirton A., Metzler M.J., Craig B.T., Hilderley A., Dunbar M., Giuffre A., et al. Perinatal stroke: mapping and modulating developmental plasticity. Nat. Rev. Neurol. 2021; 17(7): 415-32. https://doi.org/10.1038/s41582-021-00503-x
Baker K., Carlson H.L., Zewdie E., Kirton A. Developmental remodelling of the motor cortex in hemiparetic children with perinatal stroke. Pediatr. Neurol. 2020; 112: 34-43. https://doi.org/10.1016/j.pediatrneurol.2020.08.004
Kuczynski A.M., Semrau J.A., Kirton A., Dukelow S.P. Kinesthetic deficits after perinatal stroke: robotic measurement in hemiparetic children. J. Neuroeng. Rehabil. 2017; 14(1): 13. https://doi.org/10.1186/S12984-017-0221-6
Koenraads Y., Porro G.L., Braun K.P.J., Groenendaal F., De Vries L.S., Van Der Aa N.E. Prediction of visual field defects in newborn infants with perinatal arterial ischemic stroke using early MRI and DTI-based tractography of the optic radiation. Eur. J. Paediatr. Neurol. 2016; 20(2): 309-18. https://doi.org/10.1016/j.ejpn.2015.11.010
Lidzba K., de Haan B., Wilke M., Krägeloh-Mann I., Staudt M. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage. Brain Lang. 2017; 173: 1-9. https://doi.org/10.1016/J.BANDL.2017.04.006
Hamada S., Ogawa I., Yamasaki M., Kiyama Y., Kassai H., Watabe A.M., et al. The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain. Eur. J. Neurosci. 2014; 40(8): 3136-46. https://doi.org/10.1111/EJN.12682
Perrone S., Laschi E., Buonocore G. Oxidative stress biomarkers in the perinatal period: Diagnostic and prognostic value. Semin. Fetal Neonatal Med. 2020; 25(2): 101087. https://doi.org/10.1016/j.siny.2020.101087
Spaas J., van Veggel L., Schepers M., Tiane A., van Horssen J., Wilson D.M., et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell. Mol. Life Sci. 2021; 78(10): 4615-37. https://doi.org/10.1007/S00018-021-03802-0
Ohtaka-Maruyama C. Subplate neurons as an organizer of mammalian neocortical development. Front. Neuroanat. 2020; 14: 8. https://doi.org/10.3389/fnana.2020.00008
Hu B.R., Liu C.L., Ouyang Y., Blomgren K., Siesjö B.K. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J. Cereb. Blood Flow Metab. 2000; 20(9): 1294-300. https://doi.org/10.1097/00004647-200009000-00003
Mineyko A., Nettel-Aguirre A., de Jesus P., Benseler S., Yusuf K., Narendran A., et al. Association of neonatal inflammatory markers and perinatal stroke subtypes. Neurology. 2020; 95(9): e1163-73. https://doi.org/10.1212/WNL.0000000000010309
Fernández-López D., Faustino J., Klibanov A.L., Derugin N., Blanchard E., Simon F., et al. Microglial cells prevent hemorrhage in neonatal focal arterial stroke. J. Neurosci. 2016; 36(10): 2881-93. https://doi.org/10.1523/jneurosci.0140-15.2016
Fernández-López D., Faustino J., Daneman R., Zhou L., Lee S.Y., Derugin N., et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J. Neurosci. 2012; 32(28): 9588. https://doi.org/10.1523/JNEUROSCI.5977-11.2012
Langen U.H., Ayloo S., Gu C. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 2019; 35: 591-613. https://doi.org/10.1146/annurev-cellbio-100617-062608
Fajardo-Fregoso B.F., Castañeda-Cabral J.L., Beas-Zárate C., Ureña-Guerrero M.E. Neonatal excitotoxicity modifies blood-brain barrier properties increasing its susceptibility to hypertonic shock in adulthood.Int. J. Dev. Neurosci. 2020; 80(4): 335-46. https://doi.org/10.1002/JDN.10027
Yang Z., Covey M.V., Bitel C.L., Ni L., Jonakait G.M., Levison S.W. Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. Ann. Neurol. 2007; 61(3): 199-208. https://doi.org/10.1002/ana.21068
Fernández-López D., Faustino J., Derugin N., Vexler Z.S. Acute and chronic vascular responses to experimental focal arterial stroke in the neonate rat. Transl. Stroke Res. 2013; 4(2): 179. https://doi.org/10.1007/S12975-012-0214-5
Zhang S.Y., Jeffers M.S., Lagace D.C., Kirton A., Silasi G. Developmental and interventional plasticity of motor maps after perinatal stroke. J. Neurosci. 2021; 41(28): 6157-72. https://doi.org/10.1523/JNEUROSCI.3185-20.2021
Zewdie E., Damji O., Ciechanski P., Seeger T., Kirton A. Contralesional corticomotor neurophysiology in hemiparetic children with perinatal stroke: developmental plasticity and clinical function. Neurorehabil. Neural Repair. 2017; 31(3): 261-71. https://doi.org/10.1177/1545968316680485
Craig B.T., Olsen C., Mah S., Carlson H.L., Wei X.C., Kirton A. Crossed cerebellar atrophy in perinatal stroke. Stroke. 2019; 50(1): 175-7. https://doi.org/10.1161/strokeaha.118.022423
Craig B.T., Carlson H.L., Kirton A. Thalamic diaschisis following perinatal stroke is associated with clinical disability. Neuroimage Clin. 2019; 21: 101660. https://doi.org/10.1016/J.NICL.2019.101660
Titomanlio L., Fernández-López D., Manganozzi L., Moretti R., Vexler Z.S., Gressens P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: lessons from animal models. Pediatr. Neurol. 2015; 52(6): 566-84. https://doi.org/10.1016/j.pediatrneurol.2015.01.016
Sporns P.B., Fullerton H.J., Lee S., Kirton A., Wildgruber M. Current treatment for childhood arterial ischaemic stroke. Lancet Child Adolesc. Heal. 2021; 5(11): 825-36. https://doi.org/10.1016/S2352-4642(21)00167-X
Vandamme T.F. Rodent models for human diseases. Eur. J. Pharmacol. 2015; 759: 84-9. https://doi.org/10.1016/j.ejphar.2015.03.046
Eyre J.A. Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 2007; 31(8): 1136-49. https://doi.org/10.1016/j.neubiorev.2007.05.011
Mitsuie T., Nakamura S., Htun Y., Nakao Y., Arioka M., Koyano K., et al. Cerebral blood volume increment after resuscitation measured by near-infrared time-resolved spectroscopy can estimate degree of hypoxic-ischemic insult in newborn piglets. Sci. Rep. 2021; 11(1): 1-10. https://doi.org/10.1038/s41598-021-92586-1
Robertson N.J., Meehan C., Martinello K.A., Avdic-Belltheus A., Boggini T., Mutshiya T., et al. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia. Cytotherapy. 2021; 23(6): 521-35. https://doi.org/10.1016/j.jcyt.2020.10.005
Rice J.E., Vannucci R.C., Brierley J.B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 1981; 9(2): 131-41. https://doi.org/10.1002/ana.410090206
Hamdy N., Eide S., Sun H.S., Feng Z.P. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp. Neurol. 2020; 334: 113457. https://doi.org/10.1016/j.expneurol.2020.113457
Vannucci R.C., Vannucci S.J. A model of perinatal hypoxic-ischemic brain damage. Ann. N.Y. Acad. Sci. 1997; 835: 234-49. https://doi.org/10.1111/J.1749-6632.1997.TB48634.X
Alexander M., Garbus H., Smith A.L., Rosenkrantz T.S., Fitch R.H. Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model. Behav. Brain Res. 2014; 259: 85-96. https://doi.org/10.1016/J.BBR.2013.10.038
Ek C.J., D’angelo B., Baburamani A.A., Lehner C., Leverin A.L., Smith P.L.P., et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2015; 35(5): 818-27. https://doi.org/10.1038/jcbfm.2014.255
Edwards A.B., Feindel K.W., Cross J.L., Anderton R.S., Clark V.W., Knuckey N.W., et al. Modification to the Rice-Vannucci perinatal hypoxic-ischaemic encephalopathy model in the P7 rat improves the reliability of cerebral infarct development after 48 hours. J. Neurosci. Methods. 2017; 288: 62-71. https://doi.org/10.1016/j.jneumeth.2017.06.016
Ashwal S., Cole D.J., Osborne S., Osborne T.N., Pearce W.J. A new model of neonatal stroke: Reversible middle cerebral artery occlusion in the rat pup. Pediatr. Neurol. 1995; 12(3): 191-6. https://doi.org/10.1016/0887-8994(95)00006-2
Larpthaveesarp A., Gonzalez F.F. Transient middle cerebral artery occlusion model of neonatal stroke in P10 rats. J. Vis. Exp. 2017; 2017(122): e54830. https://doi.org/10.3791/54830
Derugin N., Ferriero D.M., Vexler Z.S. Neonatal reversible focal cerebral ischemia: a new model. Neurosci. Res. 1998; 32(4): 349-53. https://doi.org/10.1016/S0168-0102(98)00096-0
Brima T., Mikulecká A., Otáhal J. Impacts of perinatal induced photothrombotic stroke on sensorimotor performance in adult rats. Physiol. Res. 2013; 62(1): 85-94. https://doi.org/10.33549/physiolres.932447
Chumak T., Lecuyer M.J., Nilsson A.K., Faustino J., Ardalan M., Svedin P., et al. Maternal n-3 polyunsaturated fatty acid enriched diet commands fatty acid composition in postnatal brain and protects from neonatal arterial focal stroke. Transl. Stroke Res. 2021; 13, 449-46. https://doi.org/10.1007/s12975-021-00947-9
Renolleau S., Aggoun-Zouaoui D., Ben-Ari Y., Charriaut-Marlangue C.A. Model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat. Stroke. 1998; 29(7): 1454-61. https://doi.org/10.1161/01.STR.29.7.1454
Tsuji M., Ohshima M., Taguchi A., Kasahara Y., Ikeda T., Matsuyama T. A novel reproducible model of neonatal stroke in mice: Comparison with a hypoxia-ischemia model. Exp. Neurol. 2013; 247: 218-25. https://doi.org/10.1016/j.expneurol.2013.04.015
Tanaka E., Ogawa Y., Mukai T., Sato Y., Hamazaki T., Nagamura-Inoue T., et al. Dose-dependent effect of intravenous administration of human umbilical cord-derived mesenchymal stem cells in neonatal stroke mice. Front. Neurol. 2018; 9: 133. https://doi.org/10.3389/fneur.2018.00133
Faustino J.V., Wang X., Johnson C.E., Klibanov A., Derugin N., Wendland M.F., et al. Neurobiology of disease microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J. Neurosci. 2011; 31(36): 12992-3001. https://doi.org/10.1523/jneurosci.2102-11.2011
Ceprián M., Jiménez-Sánchez L., Vargas C., Barata L., Hind W., Martínez-Orgado J. Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology. 2017; 116: 151-9. https://doi.org/10.1016/j.neuropharm.2016.12.017
Jia J.M., Peng C., Wang Y., Zheng J., Ge W.P. Control of occlusion of middle cerebral artery in perinatal and neonatal mice with magnetic force. Mol. Brain. 2018; 11(1): 47. https://doi.org/10.1186/S13041-018-0389-0/figures/6
Watson B.D., Dietrich W.D., Busto R., Wachtel M.S., Ginsberg M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol. 1985; 17(5): 497-504. https://doi.org/10.1002/ana.410170513
Maxwell K.A., Dyck R.H. Induction of reproducible focal ischemic lesions in neonatal mice by photothrombosis. Dev. Neurosci. 2005; 27(2-4): 121-6. https://doi.org/10.1159/000085983
Tuor U.I., Qiao M., Sule M., Morgunov M., Foniok T. Magnetic resonance imaging of ischemic injury produced by varying severities of photothrombosis differs in neonatal and adult brain. NMR Biomed. 2016; 29(12): 1700-8. https://doi.org/10.1002/nbm.3626
Nakayama H., Dalton D.W., Watson B.D., Busto R., Ginsberg M.D. Journal of cerebral blood flow and metabolism photo thrombotic occlusion of rat middle cerebral artery: histopathological and hemodynamic sequelae of acute recanalization. J. Cereb. Blood Flow Metab. 1988; 8(3): 357-66. https://doi.org/10.1038/jcbfm.1988.71
Watson B.D., Prado R., Veloso A., Brunschwig J.P., Dietrich W.D. Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke. Stroke. 2002; 33(2): 428-34. https://doi.org/10.1161/hs0202.102730
Yi Y.Y., Shin H.J., Choi S.G., Kang J.W., Song H.J., Kim S.K., et al. Preventive effects of neuroprotective agents in a neonatal rat of photothrombotic stroke model.Int. J. Mol. Sci. 2020; 21(10): 3703. https://doi.org/10.3390/ijms21103703
Gennaro M., Mattiello A., Pizzorusso T. Rodent models of developmental ischemic stroke for translational research: Strengths and weaknesses. Neural. Plast. 2019; 2019: 5089321. https://doi.org/10.1155/2019/5089321
Hillman E.M.C. Coupling mechanism and significance of the BOLD Signal: A status report. Annu. Rev. Neurosci. 2014; 37: 161-81. https://doi.org/10.1146/annurev-neuro-071013-014111
Hillman E.M.C. Optical brain imaging in vivo: techniques and applications from animal to man. J. Biomed. Opt. 2007; 12(5): 051402. https://doi.org/10.1117/1.2789693
White B.R., Padawer-Curry J.A., Cohen A.S., Licht D.J., Yodh A.G. Brain segmentation, spatial censoring, and averaging techniques for optical functional connectivity imaging in mice. Biomed. Opt. Express. 2019; 10(11): 5952-73. https://doi.org/10.1364/boe.10.005952
Ma Y., Shaik M.A., Kim S.H., Kozberg M.G., Thibodeaux D.N., Zhao H.T., et al. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos. Trans. R. Soc. B Biol. Sci. 2016; 371(1705): 20150360. https://doi.org/10.1098/rstb.2015.0360
Tian L., Hires S.A., Mao T., Huber D., Chiappe M.E., Chalasani S.H., et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods. 2009; 6(12): 875-81. https://doi.org/10.1038/nmeth.1398
West S.L., Aronson J.D., Popa L.S., Feller K.D., Carter R.E., Chiesl W.M., et al. Wide-field calcium imaging of dynamic cortical networks during locomotion. Cereb Cortex. 2021; bhab373. https://doi.org/10.1093/cercor/bhab373
Cross C.M., Santos L.M., Whiteley N., Luyt K., Ashby M.C. Early functional connectivity in the developing sensorimotor network that is independent of sensory experience. bioRxiv. 2021; 2021.06.14.448057. https://doi.org/10.1101/2021.06.14.448057
Kozberg M.G., Ma Y., Shaik M.A., Kim S.H., Hillman E.M.C. Rapid postnatal expansion of neural networks occurs in an environment of altered neurovascular and neurometabolic coupling. J. Neurosci. 2016; 36(25): 6704-17. https://doi.org/10.1523/jneurosci.2363-15.2016
Murphy T.H., Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 2009; 10(12): 861-72. https://doi.org/10.1038/nrn2735
Winship I.R., Murphy T.H. In vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke. J. Neurosci. 2008; 28(26): 6592-606. https://doi.org/10.1523/jneurosci.0622-08.200