ATOPIC DERMATITIS IN CHILDREN: UP TO DATE INSIGHT ON DEVELOPMENT AND TRENDS IN THERAPY
DOI:
Abstract
The development of atopic dermatitis (AD) in children is determined by the impact of genetic and environmental factors, epidermal barrier dysfunction, and changes in the system of innate and adaptive immunity. 76.3% of patients have IgE-mediated atopic dermatitis. The article elucidates questions of the pathogenesis and treatment of atopic dermatitis using topical corticosteroids, calcineurin inhibitors, emollients, antihistamines, allergen immunotherapy, omalizumab, probiotics. Conducting individualized pathogenetic therapy in ATD allows you to achieve control throughout the disease.
About the authors
Balabolkin Ivan I.References
Балаболкин И.И., Булгакова В.А., Елисеева Т.И. Атопический дерматит у детей. М.: МИА; 2018
Silverberg J.I. Public health burden and epidemiology of atopic dermatitis. Dermatol. Clin. 2017; 35(3): 283-9. DOI: http://doi.org/10.1016/j.det.2017.02.002
Смирнова Г.И. Актуальный атопический дерматит: проблемы и перспективы. Российский аллергологический журнал. 2017; 14(4-5): 30-9
de la O-Escamilla N.O., Sidbury R. Atopic dermatitis: update on pathogenesis and therapy. Pediatr. Ann. 2020; 49(3): 140-6. DOI: http://doi.org/10.3928/19382359-20200217-01
Saini S., Pansare M. New insights and treatments in atopic dermatitis. Pediatr. Clin. North. Am. 2019; 66(5): 1021-33. DOI: http://doi.org/10.1016/j.pcl.2019.06.008
Hill D.A., Spergel J.M. The atopic march: critical evidence and clinical relevance. Ann. Allergy Asthma Immunol. 2018; 120(2): 131-7. DOI: http://doi.org/10.1016/j.anai.2017.10.037
Aw M., Penn J., Gauvreau G.M., Lima H., Sehmi R. Atopic march: Collegium internationale allergologicum update 2020. Int. Arch. Allergy Immunol. 2020; 181(1): 1-10. DOI: http://doi.org/10.1159/000502958
Taniuchi S., Soejima K., Hatano Y., Takahashi M., Minami H. Dual factors may be necessary for development of atopic march in early infancy. J. Nippon Med. Sch. 2018; 85(1): 2-10. DOI: http://doi.org/10.1272/jnms.2018_85-1
Thorsteinsdottir S., Stokholm J., Thyssen J.P., Nørgaard S., Thorsen J., Chawes B.L., et al. Genetic, clinical, and environmental factors associated with persistent atopic dermatitis in childhood. JAMA Dermatol. 2019; 155(1): 50-7. DOI: http://doi.org/10.1001/jamadermatol.2018.4061
Vakharia P.P., Silverberg J.I. New and emerging therapies for paediatric atopic dermatitis. Lancet Child Adolesc. Health. 2019; 3(5): 343-53. DOI: http://doi.org/10.1016/S2352-4642(19)30030-6
Wan J., Mitra N., Hoffstad O.J., Yan A.C., Margolis D.J. Longitudinal atopic dermatitis control and persistence vary with timing of disease onset in children: a cohort study. J. Am. Acad. Dermatol. 2019; 81(6): 1292-9. DOI: http://doi.org/10.1016/j.jaad.2019.05.016
Fishbein A.B., Silverberg J.I., Wilson E.J., Ong P.Y. Update on atopic dermatitis: diagnosis, severity assessment, and treatment selection. J. Allergy Clin. Immunol. Pract. 2020; 8(1): 91-101. DOI: http://doi.org/10.1016/j.jaip.2019.06.044
Dêbiñska A., Danielewicz H., Drabik-Chamerska A., Kalita D., Boznañski A. Chromosome 11q13.5 Variant as a Risk Factor for Atopic Dermatitis in Children. Postepy Dermatol Alergol. 2020; 37(1): 103-10. DOI: http://doi.org/10.5114/ada.2020.93388
Bergallo M., Accorinti M., Galliano I., Coppo P., Montanari P., Quaglino P., et al. Expression of miRNA 155, FOXP3 and ROR Gamma, in children with moderate and severe atopic dermatitis. G. Ital. Dermatol. Venereol. 2020; 155(2): 168-72. DOI: http://doi.org/10.23736/S0392-0488.17.05707-8
Yu X., Wang M., Li L., Zhang L., Chan M.T.V., Wu W.K.K. MicroRNAs in atopic dermatitis: A systematic review. J. Cell Mol. Med. 2020; 24(11): 5966-72. DOI: http://doi.org/10.1111/jcmm.15208
Bin L., Leung D.Y. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin. Immunol. 2016; 12: 52. DOI: http://doi.org/10.1186/s13223-016-0158-5
Kim J.E., Kim J.S., Cho D.H., Park H.J. Molecular mechanisms of cutaneous inflammatory disorder: atopic dermatitis. Int. J. Mol. Sci. 2016; 17(8): 1234. DOI: http://doi.org/10.3390/ijms17081234
Byeon J.H., Yoon W., Ahn S.H., Lee H.S., Kim S., Yoo Y. Correlation of serum interleukin-31 with pruritus and blood eosinophil markers in children with atopic dermatitis. Allergy Asthma Proc. 2020; 41(1): 59-65. DOI: http://doi.org/10.2500/aap.2020.41.190016
Roduit C., Frei R., Depner M., Karvonen A.M., Renz H., Braun-Fahrländer C., et al. Phenotypes of atopic dermatitis depending on the timing of onset and progression in childhood. JAMA Pediatr. 2017; 171(7): 655-62. DOI: http://doi.org/10.1001/jamapediatrics.2017.0556
Thyssen J.P., Rinnov M.R., Vestergaard C. Disease mechanisms in atopic dermatitis: a review of aetiological factors. Acta Derm. Venereol. 2020; 100(12): adv00162. DOI: http://doi.org/10.2340/00015555-3512
Agón-Banzo P.J., Sanmartin R., García-Malinis A.J., Hernández-Martín Á., Puzo J., Doste D., et al. Body mass index and serum lipid profile: association with atopic dermatitis in a paediatric population. Australas J. Dermatol. 2020; 61(1): 60-4. DOI: http://doi.org/10.1111/ajd.13154
Yang G., Seok J.K., Kang H.C., Cho Y.Y., Lee H.S., Lee J.Y. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int. J. Mol. Sci. 2020; 21(8): 2867. DOI: http://doi.org/10.3390/ijms21082867
Kim J., Kim B.E., Ahn K., Leung D.Y. Interactions between atopic dermatitis and staphylococcus aureus infection: clinical implications. Allergy Asthma Immunol. Res. 2019; 11(5): 593-603. DOI: http://doi.org/10.4168/aair.2019.11.5.593
Rehbinder E.M., Advocaat Endre K.M., Lødrup Carlsen K.C., Asarnoj A., Bains K.E.S., Berents T.L., et al. Predicting skin barrier dysfunction and atopic dermatitis in early infancy. J. Allergy Clin. Immunol Pract. 2020; 8(2): 664-73. DOI: http://doi.org/10.1016/j.jaip.2019.09.014
Hertz A., Azulay-Abulafia L., Nascimento A.P.D., Ohara C.Y., Kuschnir F.C., Porto L.C. Analysis of filaggrin 2 gene polymorphisms in patients with atopic dermatitis. An. Bras. Dermatol. 2020; 95(2): 173-9. DOI: http://doi.org/10.1016/j.abd.2019.07.002
Drislane C., Irvine A.D. The role of filaggrin in atopic dermatitis and allergic disease. Ann. Allergy Asthma Immunol. 2020; 124(1): 36-43. DOI: http://doi.org/10.1016/j.anai.2019.10.008
Thyssen J.P., Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol. 2014; 134(4): 792-9. DOI: http://doi.org/10.1016/j.jaci.2014.06.014
Stefanovic N., Flohr C., Irvine A.D. The exposome in atopic dermatitis. Allergy. 2020; 75(1): 63-74. DOI: http://doi.org/10.1111/all.13946
Balabolkin I.I., Larkova I.A., Bulgakova V.A, Pinelis V.G. Mutations in the gene filaggrin in patients with atopic dermatitis as a risk factor for the severity of the disease. Allergy. 2016;71(Suppl. 102): 300.
Marenholz I., Nicke R., Rüschendorf F., Schulz F., Esparza-Gordillo J., Kerscher T., et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J. Allergy Clin. Immunol. 2006; 118(4): 866-71. DOI: http://doi.org/10.1016/j.jaci.2006.07.026
Tham E.H., Rajakulendran M., Lee B.W., Van Bever H.P.S. Epicutaneous sensitization to food allergens in atopic dermatitis: what do we know? Pediatr. Allergy Immunol. 2020; 31(1): 7-18. DOI: http://doi.org/10.1111/pai.13127
Moy A.P., Murali M., Kroshinsky D., Duncan L.M., Nazarian R.M. Immunologic overlap of helper t-cell subtypes 17 and 22 in erythrodermic psoriasis and atopic dermatitis. JAMA Dermatol. 2015; 151(7): 753-60. DOI: http://doi.org/10.1001/jamadermatol.2015.2
Kim B.S. Innate lymphoid cells in the skin. J. Invest. Dermatol. 2015; 135(3): 673-8. DOI: http://doi.org/10.1038/jid.2014.401
Балаболкин И.И., Садикова Т.Е. Клинико-иммунологические варианты атопического дерматита у детей и подростков и эффективность патогенетической терапии. Педиатрия. Журнал им. Г.Н. Сперанского. 2012; 92(3): 6-13
Howell M.D., Fairchild H.R., Kim B.E., Bin L., Boguniewicz M., Redzic J.S., et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J. Invest. Dermatol. 2008; 128(9): 2248-58. DOI: http://doi.org/10.1038/jid.2008.74
Noda S., Krueger J.G., Guttman-Yassk E. The translational revolution and use of biologics in patients with inflammatory skin diseases. J. Allergy Clin. Immunol. 2015; 135(2): 324-36. DOI: http://doi.org/10.1016/j.jaci.2014.11.015
Looman K.I.M., van Meel E.R., Grosserichter-Wagener C., Vissers F.J.M., Klingenberg J.H., de Jong N.W., et al. Associations of Th2, Th17, Treg cells, and IgA + memory B cells with atopic disease in children: The Generation R Study. Allergy. 2020; 75(1): 178-87. DOI: http://doi.org/10.1111/all.14010
Ziegler S.F. Thymic stromal lymphopoietin and allergic disease. J. Allergy Clin. Immunol. 2012; 130(4): 845-52. DOI: http://doi.org/10.1016/j.jaci.2012.07.010
Gittler J.K., Shemer A., Suárez-Fariñas M., Fuentes-Duculan J., Gulewicz K.J., Wang C.Q.F., et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 2012; 130(6): 1344-54. DOI: http://doi.org/10.1016/j.jaci.2012.07.012
Czarnowicki T., He H., Canter T., Han J., Lefferdink R., Erickson T., et al. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. J. Allergy Clin. Immunol. 2020; 145(1): 215-28. DOI: http://doi.org/10.1016/j.jaci.2019.09.031
Ganem M.B., De Marzi M.C., Fernández-Lynch M.J., Jancic C., Vermeulen M., Geffner J., et al. Uptake and intracellular trafficking of superantigens in dendritic cells. PLoS One. 2013; 8(6): e66244. DOI: http://doi.org/10.1371/journal.pone.0066244
Van Drongelen V., Haisma E.M., Out-Luiting J.J., Nibbering P.H., El Ghalbzouri A. Reduced Filaggrin Expression Is Accompanied by Increased Staphylococcus Aureus Colonization of Epidermal Skin Models. Clin. Exp. Allergy. 2014; 44(12): 1515-24. DOI: http://doi.org/10.1111/cea.12443
Cevikbas F., Wang X., Akiyama T., Kempkes C., Savinko T., Antal A., et al. A sensory neuron-expressed IL-31 receptor mediates T Helper cell-dependent itch: involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 2014; 133(2): 448-60. DOI: http://doi.org/10.1016/j.jaci.2013.10.048
Смирнова Г.И., Манкуте Г.Р. Микробиота кишечника и атопический дерматит у детей. Российский педиатрический журнал. 2015; 18(6): 46-53.
Балаболкин И.И., Ревякина В.А., ред. Пищевая аллергия у детей. М.: Династия; 2010.
Leong K., Ong T.W.Y., Foong Y.W., Wong Y.P., Lim W., Liew H.M., et al. Multidisciplinary management of chronic atopic dermatitis in children and adolescents: a prospective pilot study. J. Dermatolog. Treat. 2020; 1-7. DOI: http://doi.org/10.1080/09546634.2020.1782321
Смирнова Г.И. Эффективное лечение атопического дерматита у детей. Российский педиатрический журнал. 2012; 15(5): 27-34
Simpson E.L., Chalmers J.R., Hanifin J.M., Thomas K.S., Cork M.J., McLean W.H.I., et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J. Allergy Clin. Immunol. 2014; 134(4): 818-23. DOI: http://doi.org/10.1016/j.jaci.2014.08.005
Perrett K.P., Peters R.L. Emollients for prevention of atopic dermatitis in infancy. Lancet. 2020; 395(10228): 923-4. DOI: http://doi.org/10.1016/S0140-6736(19)33174-5
Skjerven H.O., Rehbinder E.M., Vettukattil R., LeBlanc M., Granum B., Haugen G., et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): A factorial, multicentre, cluster-randomised trial. Lancet. 2020; 395(10228): 951-61. DOI: http://doi.org/10.1016/S0140-6736(19)32983-6
Perälä M., Ahola M., Mikkola T., Pelkonen A.S., Remitz A., Mäkelä M.J. Young children with moderate-to-severe atopic dermatitis can be treated safely and effectively with either topical tacrolimus or mild corticosteroids. Acta Paediatr. 2020; 109(3): 550-6. DOI: http://doi.org/10.1111/apa.15001
Sheinkopf L.E., Rafi A.W., Do L.T., Katz R.M., Klaustermeyer W.B. Efficacy of omalizumab in the treatment of atopic dermatitis: a pilot study. Allergy Asthma Proc. 2008; 29(5): 530-7. DOI: http://doi.org/10.2500/aap.2008.29.3160
Heil P.M., Maurer D., Klein B. Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course - a randomized, placebo-controlled and double blind pilot study. J. Dtsch Dermatol. Ges. 2010; 8(12): 990-8. DOI: http://doi.org/10.1111/j.1610-0387.2010.07497.x
Larenas-Linnemann D., Wahn U., Kopp M. Use of omalizumab to improve desensitization safety in allergen immunotherapy. J. Allergy Clin. Immunol. 2014; 133: 937-e2. DOI: http://doi.org/10.1016/j.jaci.2013.12.1089
Beck L.A., Thaci D., Hamilton J.D., Graham N.M., Bieber T., Rocklin R., et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 2014; 371(2): 130-9. DOI: http://doi.org/10.1056/NEJMoa1314768
Cork M.J., Thaçi D., Eichenfield L.F., Arkwright P.D., Hultsch T., Davis J.D., et al. Dupilumab in adolescents with uncontrolled moderate-to-severe atopic dermatitis: results from a phase IIa open-label trial and subsequent phase III open-label extension. Br. J. Dermatol. 2020; 182(1): 85-96. DOI: http://doi.org/10.1111/bjd.18476
Paller A.S., Bansal A., Simpson E.L., Boguniewicz M., Blauvelt A., Siegfried E.C., et al. Clinically meaningful responses to dupilumab in adolescents with uncontrolled moderate-to-severe atopic dermatitis: post-hoc analyses from a randomized clinical trial. Am. J. Clin. Dermatol. 2020; 21(1): 119-31. DOI: http://doi.org/10.1007/s40257-019-00478-y
Amalia N., Orchard D., Francis K.L., King E. Systematic review and meta-analysis on the use of probiotic supplementation in pregnant mother, breastfeeding mother and infant for the prevention of atopic dermatitis in children. Australas J. Dermatol. 2020; 61(2): 158-73. DOI: http://doi.org/10.1111/ajd.13186
Дополнительные файлы
Для цитирования:
For citation:
Refbacks
- Refbacks are not listed

Контент доступен под лицензией Creative Commons Attribution 3.0 License.
ISSN: (Print)
ISSN: (Online)