1. Song, J., Shen, Q., Wang, L., Qiu, G., Shi, J., Xu, J., Brookes, P.C., Liu, X., Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure, Environmental Pollution. Environmental Pollution. 2018. 243 (A). December 2018: 510-8. DOI: https://www.sciencedirect.com/science/article/pii/S0269749118321079
2. Staniek H. The Combined Effects of Cr(III) Supplementation and Iron Deficiency on the Copper and Zinc Status in Wistar Rats. Biological Trace Element Research. 2019; 190: 414–24. DOI: https://www.ncbi.nlm.nih.gov/pubmed/30430418
3. WHO (2019). Chemical mixtures in source water and drinking-water. Geneva: World Health Organization; 2017. 104 P. DOI: http://apps.who.int/iris/bitstream/10665/255543/1/9789241512374-eng.pdf
4. EFSA. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal. 2019;17(3):5634, 77 p. DOI: http://www.efsa.europa.eu/en/efsajournal/pub/5634
5. Cox, C. Threshold dose-response models in toxicology. Biometrics. 1987; 43: 511–23.
6. Gennings C., Carter Jr. W.H., Caseya M., Moserb V., Carchmanc R., Simmons J.E. Analysis of functional effects of a mixture of five pesticides using a ray design. Environmental Toxicology and Pharmacology. 2004; 18: 115–25.
7. Panov V.G,, Varaksin A.N., Minigalieva I.A. Katsnelson B.A. The Response Surface Methodology as an Approach of Choice to Modeling and Analyzing Combined Toxicity: Theoretical Premises, the Most Important Inferences, Experimental Justification. Biom. Biostat. J. 2017; 1: 112. DOI: https://scientificliterature.org/Biometrics/Biometrics-17-112.pdf
8. Katsnelson B.A., Privalova L.I., Varaksin A.N., Kazmer J.I., Kireyeva E.P., Panov V.G. An Approach to Characterizing the Type of Combined Environmental Toxicity Based on Epidemiologically Assessed Exposure-Response Relationships. The Open Epidemiology Journal. 2011; 411 (4): 60–69. DOI: https://benthamopen.com/DOWNLOAD-PDF/TOEPIJ-4-60