Pesticide Chemistry. Crop Protection, Public Health, Environmental Safety. Ed. by Ohkawa H., Miyagawa H., Lee P.W. Verlag: WILEY-VCH; 2007: 497.
The Pesticide Manual. 17th Edition, Turner J.A., еd. Alton: BCPS; 2015.
Haidukowski M., Perrone G., Visconti A., et al. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytopathologia Mediterranea. 2012; 51 (1): 236-46. Available at: http://www.fupress.net/index.php/pm/article/view/9401
Paul P.A., Lipps P.E., Hershman D.E., et al. Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology. 2008; 98: 999-1011. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18943738
Treikale О., Afanasieva I., Pugacheva E. Protection of winter wheat against head blight using a new fungicide Prozaro. Plant protection and quarantine. 2011; 6: 49-50 (in Russian).
Baybakova Ye. V., Nefedieva Ye. E., Khokhlova T.V. The effect of prothioconazole on wheat physiological properties. Subtropical and ornamental gardening. 2017; 61: 138-41 (in Russian).
Evaluation of the new active prothioconazole in the product redigo fungicidal seed treatment. Australian Pesticides and Veterinary Medicines Authority. Australia: Canberra; 2007. Available at: https://apvma.gov.au/sites/default/files/publication/13941-prs-prothioconazole.pdf
Parker J.E., Warrilow A.G.S., Cools H.J., Martel C.M., Nes W.D., Fraaije B.A., et al. Mechanism of Binding of Prothioconazole to Mycosphaerella graminicola CYP51 Differs from That of Other Azole Antifungals. Appl Environ Microbiol. 2011; 77(4): 1460-5.
Beloshapkina O.O., Akimov T.A. Complex evaluation of fungicide treatments of winter wheat seeds in field and in vitro trials. Theoretical and applied problems of agro-industrial complex. 2016; 1 (26): 58-64 (in Russian)
Komkov N.D. New fungicide “Bayer Cropscience” - the key to get good harvest. Plant protection and quarantine. 2010; 5: 36-7 (in Russian).
Shcherbakov P.A. Lamador: excellent start and successful finish of an agricultural season. Plant protection and quarantine. 2010; 3: 76-7 (in Russian)
The reference book of the pesticides and agrochemicals allowed for use in the territory of the Russian Federation, Moscow: LLC Publishing House Agrorus, 2017. Year-book. Release 21 (in Russian).
Haas M., Justus K. Metabolism of Prothioconazole (JAU6476) in animals and plants. Pflanzenschutz-Nachr. Bayer - English edition. 2004; 57(2): 207-24. Available at: http://www.cnshb.ru/jour/j_as.asp?id=18231
Baybakova E.V., Nefedyeva E.E., Belopukhov of S.L. Issledovaniye of influence of modern protravitel on viability and growth of sprouts of grain crops. News of higher education institutions. Applied chemistry and biotechnology. 2016; 6 (3): 57-64 (in Russian).
Parker J.E.,Warrilow A.G., Cools H.J., Fraaije B.A., Lucas J.A., Rigdova K.,et al. Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase. Appl Environ Microbiol. 2013 Mar; 79(5): 1639-45. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591943
Beyer M., M.B. Klix and J.A. Verreet. Quantifying the effects of previous crop, tillage, cultivar and triazole fungicides on the deoxynivalenol content of wheat grain - a review. Journal of Plant Diseases and Protection. 2006; 113: 241-6. Available at: http://wiki.pestinfo.org/wiki/Journal_of_Plant_Diseases_and_Protection_(2006)_113,_241-246
Muravyeva S. I., Bukovsky M. I., Prokhorov E. K. et al. Guidelines of the control of hazardous substances in workplace air: Ref. ed. M.: Chemistry; 1991 (in Russian).
Hellpointner E., Borchers H. Behaviour of Prothioconazole (JAU 6476) in the environment. Pflanzenschutz-Nachr.Bayer - English edition. 2004; 57 (2): 163-80.
Font G., Manes J., Molto J.C., Pico Y. Solid-phase extraction in multi-residue pesticide analysis of water. J. Chromatograph. Anal. 1993; 642: 135-61. Available at: http://arch.neicon.ru/xmlui/handle/123456789/1693630?show=full
Sychev K.S., Davankov V.A. Materials and methods of sample preparation in chromatography: solid phase concentration and adsorption purification. Sorption and chromatographic processes. 2004; 4 (1): 5-28 (in Russian)
Wu J., Tragas C., Lord H., Pawliszyn J. Analysis of polar pesticides in water and wine samples by automated intube solid-phase microextraction coupled with high-performance liquid chromatography-mass spectrometry. J. Chromatograph. Anal. 2002. 976; 1-2: 357-67. Available at: https://www.sciencedirect.com/science/article/pii/S0021967302010725
S.A. Barker. Matrix solid-phase dispersion. J. Chromat. A. 2000; 885: 115-27.
Deineka V.I., Deineka L.A., Sidorov A.N. et al. The evaluation of the properties of the solid-phase extraction cartridge sorbents: the role of the «gallery» pores. Sorption and chromatographic processes. 2016; 16 (5): 624-30 (in Russian).
Van Seeventer P.B., Weenen H., Winkel C., Kerler J. Stability of thiols in an aqueous process flavoring. 2001; 49: 4292-5. Available at: http://www.biomedsearch.com/nih/Stability-thiols-in-aqueous-process/11559126.html
Wang C.I.A., Harvey P.J., Lewis R.J. Stabilization of the cysteine-rich conotoxin mria by using a 1,2,3-triazole as a disulfide bond mimetic. Angewandte chemie - international edition. 2015; 54 (4): 1361-4.
Weerawatanakorn M., Wu J.-Ch., Pan M.-Hs, Ho Ch.-T. Reactivity and stability of selected flavor compounds. J. Food and Drug Anal. 2015; 23 (2): 176-90. Available at: https://www.sciencedirect.com/science/article/pii/S1021949815000277
Charles-Bernard M., Roberts D.D., Kraehenbuehl K. Interactions between volatile and nonvolatile coffee components. 2. Mechanistic study focused on volatile thiols. J Agric Food Chem. 2005; 53: 4426-33. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-20744454899&origin=inward&txGid=99b59e2e41903ccf7cf67c3e05faadc4
Cortez R., Luna-Vital D.A., Margulis D., Gonzalez de Mejia E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Comprehensive reviews in Food Science and Food Safety. 2017; 16 (1): 180-98. Available at: http://onlinelibrary.wiley.com/doi/10.1111/1541-4337.12244/full
Sandmann A., Kompch A., Mackert V., Liebscher Ch. L., Winterer M. Interaction of l-Cysteine with ZnO: Structure, Surface Chemistry, and Optical Properties. Langmuir. 2015; 31 (21): 5701-11. Available at: https://pubs.acs.org/doi/abs/10.1021/la504968m
Zheng J., Yang T., Zhou J., Xu M., Zhang X., Rao Zh. Elimination of a Free Cysteine by Creation of a Disulfide Bond Increases the Activity and Stability of Candida boidinii Formate Dehydrogenase. Appl. Environ. Microbiol. 2017; 83 (2). Available at: http://aem.asm.org/content/83/2/e02624-16.full.