Chaplinsky A.V., Plaksin S.M. Risk Management in the State Control in Russia. Voprosy gosudarstvennogo i municipal’nogo upravleniya. 2016; (2): 7-29. (in Russian)
Usmanovа D.R., Kazamirov A.I. The risk-oriented approach in control and oversight activities. Evrazijskij yuridicheskij zhurnal. 2016; 6 (97): 69-70. (in Russian)
Bender W.J., Ayyub B.M. Risk-based cost control for construction. AACE International Transactions. 2000: 11.
Money C.D. European experiences in the development of approaches for the successful control of workplace health risks. Ann. Occup. Hyg. 2003; 47(7): 533-40.
Zalk David m., Kamerzell R., Paik S., Kapp J., Harrington D., Swuste P. Risk Level Based Management System: A Control Banding Model for Occupational Health and Safety Risk Management in a Highly Regulated Environment. Industrial Health. 2010; 48: 18-28 DOI: 10.2486/indhealth.48.18
Leeves G.D., Herbert R.D. Economic and environmental impacts of pollution control in a system of environment and economic interdependence. Chaos, Solitons & Fractals. 2002; 13 (4): 693-700.
Riediker M., Ostiguy C., Triolet J., et al. Development of a Control Banding Tool for Nanomaterials. Journal of Nanomaterials. 2012; 2012:1.
Popova A.Yu., Zaitseva N.V., May I.V., Kiryanov D.A., Sboev A.S. Research and methodology approaches to the classification of economic units by public health harm risk for scheduling control and supervisory events. Health Risk Analysis. 2014; 4: 4-13 (in Russian).
Goryaev D.V., Chernenko V.V., Tikhonov I.V., Fedoreev R.V. On the implementation of risk-oriented approach to the control and supervisory activities of Rospotrebnadzor in the Krasnoyarsk Territory. Health Risk Analysis. 2016; 1: 96-102. DOI: 10.21668/health.risk/2016.1.11.eng (in Russian)
Polyakova M.F. On the issue of the concept of the development of the laboratory service of the FGUZ “Center for Hygiene and Epidemiology in the Lipetsk Region”. Zdorov’e naseleniya i sreda obitaniya. 2009; 1(190): 5-8 (in Russian).
Mal’yshev V.V. The role of industrial laboratory monitoring of water quality as an integral part of sanitary surveillance. Sanitarnyj vrach. 2012; (8): 48-51. (in Russian)
Tutelyan V.A., Nikityuk D.B., Khotimchenko S.A. Normative base for food quality and safety assessment. Russian Journal of Rehabilitation Medicine. 2017; (2): 74-120. (in Russian)
Kleshchina Yu. V., Eliseev Yu. Yu. Monitoring for contamination of food commodities and food products with toxic elements. Gigiena i sanitariya. 2013; (1): 81-2. (in Russian)
Makarov D.A., Komarov A.A., Selimov R.N. Maintenance of chemical safety of food products in the Russian Federation. Kontrol’ kachestva produkcii. 2017; (5): 21-6. (in Russian)
Belova L.V., Kartsev V.V., Pilkova T.Yu., Novikova Yu.A. Population health risk evaluation to the influence of factors of microbial nature in production and consumption of some types of unsterilized fish product. Profilakticheskaya i klinicheskaya medicina. 2014; 3(52): 38-43. (in Russian)
Sabirova K.M., Kislitsina L.B., Kiku P.F. Risk assessment for health of population of Primorsky Krai from exposure to arsenic in foods. Zdorov’e. Medicinskaya ehkologiya. Nauka. 2017; 70 (3): 139-42 (in Russian).
Bagryantseva О.V., Shatrov G.N., Khotimchenko S.A., Bessonov V.V., Arnautov O.V. Aluminium: food-related health risk assessment of the consumers. Health Risk Analysis. 2016; (1): 59-68. DOI: 10.21668/health.risk/2016.1.07.eng (in Russian)
Zaitseva N., May I., Kriulina N. Simulation and instrumental examination of indoor air for formaldehyde, styrene and ethylbenzene, migrating from building and home decoration materials in the presence of combined use. Proceedings: Indoor Air 2014 - 13th International Conference on Indoor Air Quality and Climate. 2014: 219-24.
Vasilovsky A.M., Kurkatov S.V., Klimatskaya L.G. Optimization of state sanitary epidemiological surveillance over food raw materials and foodstuffs manufactured in the Krasnoyarsk Territory. Zdravoohranenie Rossijskoj Federacii. 2011; 3: 41-3. (in Russian)
Groshev E.N., Rudakov O.B., Podolina E.A., Phan Vinh Thinh. Application of chromatographyс methods for quality control and safety of building materials (review). Sorbcionnye i hromatograficheskie processy. 2011; 11 (3): 335-49. (in Russian).
Shaevich A.B. Control (supervision) in the field of technical regulation: a look at the situation. Metody otsenki sootvetstviya. 2008; (1): 13. (in Russian).
Kirkwood M. AMRC: Protecting resources, promoting value: a doctor’s guide to cutting waste in clinical care. 2014: 62.
Zanabria R., Racicot M., Cormier M., Arsenault J., Ferrouillet C., Letellier A., Tiwari A., Maskay A., Griffiths M., Holley R., Gill T., Charlebois S., Quessy, S. Selection of risk factors to be included in the Canadian Food Inspection Agency risk assessment inspection model for food establishments. Food Microbiol. 2018; 75: 72-81. DOI: 10.1016/j.fm.2017.09.019
Dearfield K.L., Hoelzer K., Kause J.R. Review of various approaches for assessing public health risks in regulatory decision making: Choosing the right approach for the problem. Journal of Food Protection, 2014; 77 (8): 1428-40.
Son S.L., Guiahi M., Heyborne K.D. Historical and clinical factors associated with positive urine toxicology screening on labor and delivery. European Journal of Obstetrics Gynecology and Reproductive Biology. 2018; 228: 261-6.
Pielaat A., Chardon J.E., Wijnands L.M., Evers E.G. A risk based sampling design including exposure assessment linked to disease burden, uncertainty and costs. Food Control. 2018; (84): 23-32. DOI: 10.1016/j.foodcont.2017.07.014
Asselt E.D., van der Spiegel M., Noordam M.Y., Pikkemaat M.G., van der Fels-Klerx H.J. Risk кanking of chemical hazards in food-A case study on antibiotics in the Netherlands. Food Research International. 2013; 54(2): 1636-42.
Nepusz T., Petróczi A., Naughton D.P. Interactive network analytical tool for instantaneous bespoke interrogation of food safety notifications. PLoS ONE. 2012; 7 (4). DOI:10.1371/journal.pone.0035652
Naughton D.P., Nepusz T., Petróczi A. Network analysis: A promising tool for food safety. Current Opinion in Food Science. 2015; 6: 44-8. DOI:10.1016/j.cofs.2015.12.005
Lee K.M., Herrman T.J., Jones B. Application of multivariate statistics in a risk-based approach to regulatory compliance. Food Control. 2009; 20(1): 17-26. DOI:10.1016/j.foodcont.2008.01.009
FAO/WHO Statistical Aspects of Microbiological Criteria Related to Foods. A Risk Managers Guide. Rome, 2016: 145.
Prussova V.N., Kiva M.S., Klimenko V.V. A retrospective analysis of the quality of foodstuffs and food raw materials for microbiological indicators. Zdorov’e. Medicinskaya ehkologiya. Nauka. 2016; 66 (3): 120-6. (in Russian)
Pedersen B., Gorzkowska-Sobas A.A., Gerevini M., Prugger R., et al. Protecting our food: Can standard food safety analysis detect adulteration of food products with selected chemical agents? TrAC - Trends in Analytical Chemistry. 2016; 85 (Part B): 42-6.
Bower J.A. Statistical Methods for Food Science: Introductory Procedures for the Food Practitioner, 2nd ed. Wiley Blackwell, 2013:334.