ОБЕСПЕЧЕННОСТЬ МИКРОНУТРИЕНТАМИ, ИММУННЫЙ ОТВЕТ И COVID-19
DOI:
Аннотация
Вакцинация и меры гигиены являются основными стратегиями, которые помогают ограничить распространение и воздействие инфекций, в том числе острых респираторных заболеваний. Однако пандемия инфекции SARS-CoV-2 и тяжелые исходы COVID-19 требуют поиска дополнительных мер, направленных на снижение заболеваемости и смертности от коронавирусной инфекции. Дополнительной стратегией профилактики, безопасной и экономически эффективной, является оптимизация микронутриентного статуса больного. Витамины и минеральные вещества вовлечены в реализацию всех звеньев иммунного ответа, и недостаточная микронутриентная обеспеченность неизбежно сказывается на иммунном статусе. Влияние таких микронутриентов, как витамин D, аскорбиновая кислота, цинк, омега-3 полиненасыщенные жирные кислоты, на иммунный ответ изучается на протяжении нескольких десятилетий. Накоплена значительная доказательная база о значении обеспеченности этими нутриентами для адекватного иммунного ответа в контексте профилактики инфекционных болезней и особенностей их течения. В то же время недостаточная обеспеченность различными микронутриентами приобретает глобальный масштаб, затрагивая все страны и все слои населения. Обзор содержит данные о состоянии микронутриентного статуса населения, обсуждается роль ключевых иммунонутриентов в профилактике и лечении респираторных инфекций, приведены данные последних мета-анализов, представлены также рекомендации экспертов в области нутрициологии, разработанные в 2020 г. в связи с пандемией COVID-19.
Об авторах
Фисенко Андрей ПетровичМакарова Светлана Геннадиевна
Список литературы
Koletzko B., Biesalski H.K., Black R.E., eds. Hidden Hunger. Malnutrition and the First 1,000 Days of Life: Causes, Consequences and Solutions. World Review of Nutrition and Dietetics. Basel: Karger; 2016.
Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020; 12(4): 1181. DOI: http://doi.org/10.3390/nu12041181
Baileya R.L., West K.P. Jr., Black R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015; 66(Suppl. 2): 22-33. DOI: http://doi.org/10.1159/000371618
Elmadfa I., Meyer A., Nowak V., Hasenegger V., Putz P., Verstraeten R., et al. European nutrition and health report. Forum Nutr. 2009; 62: 1-405. DOI: http://doi.org/10.1159/000242367
WHO Guideline: Use of Multiple Micronutrient Powders for Point-of-Use Fortification of Foods Consumed by Infants and Young Children Aged 6-23 Months and Children Aged 2-12 Years. Geneva; 2016. Available at: http://www.ncbi.nlm.nih.gov/books/NBK409166
Коденцова В.М., Вржесинская О.А., Никитюк Д.Б., Тутельян В.А. Витаминная обеспеченность взрослого населения Российской Федерации: 1987-2017 гг. Вопр. питания. 2018;87(4):62-68. DOI: 10.24411/0042-8833-2018-10043
Маюрникова Л. А., Кокшаров А. А., Крапива Т. В., Новоселов С.В. Обогащение пищевых продуктов как фактор профилактики микронутриентной недостаточности. Техника и технология пищевых производств. 2020;50(1):124-139. doi.org/10.21603/2074-9414-2020-1-124-139
Gibson R.S., Raboy V., King J.C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 2018; 76(11): 793-804. DOI: http://doi.org/10.1093/nutrit/nuy028
Rudloff S., Bührer C., Jochum F., Kauth T., Kersting M., Körner A., et al. Vegetarian diets in childhood and adolescence: Position paper of the nutrition committee. Mol. Cell Pediatr. 2019; 6(1): 4. DOI: http://doi.org/10.1186/s40348-019-0091-z
Borel P., Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Ann. Rev. Nutr. 2018; 38(1): 69-96. DOI: http://doi.org/10.1146/annurev-nutr-082117-051628
Péter S., Holguin F., Wood L.G., Clougherty J.E., Raederstorff D., Antal M., et al. Nutritional solutions to reduce risks of negative health impacts of air pollution. Nutrients. 2015; 7(12): 10398-416. DOI: http://doi.org/10.3390/nu7125539
Gombart A.F., Pierre A., Maggini S. A review of micronutrients and the immune system - working in harmony to reduce the risk of infection. Nutrients. 2020; 12(1): 236. DOI: http://doi.org/10.3390/nu12010236
He Q., Gu Y., Zhang M. Spatiotemporal trends of PM2.5 concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data. Environ. Int. 2020; 137: 105536. DOI: http://doi.org/10.1016/j.envint.2020.105536
Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020; 12(4): 988. DOI: http://doi.org/10.3390/nu12040988
Ginde A.A., Mansbach J.M., Camargo C.A. Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009; 169(4): 384-90. DOI: http://doi.org/10.1001/archinternmed.2008.560
Laaksi I., Ruohola J.P., Tuohimaa P., Auvinen A., Haataja R., Pihlajamaki H., et al. An association of serum vitamin D concentrations № 40 nmol/L with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr. 2007; 86(3): 714-7. DOI: http://doi.org/10.1093/ajcn/86.3.714
Sabetta J.R., DePetrillo P., Cipriani R.J., Smardin J., Burns L.A., Landry M.L. Serum 25-hydroxyvitamin D and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One. 2010; 5(6): e11088. DOI: http://doi.org/10.1371/journal.pone.0011088
Science M., Maguire J.L., Russell M.L., Smieja M., Walter S.D., Loeb M. Low serum 25-hydroxyvitamin D level and risk of upper respiratory tract infection in children and adolescents. Clin. Infect. Dis. 2013; 57(3): 392-7. DOI: http://doi.org/10.1093.cid.cit289
Autier P., Mullie P., Macacu A., Dragomir M., Boniol M., Coppens K., et al. Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017; 5(12): 986-1004. DOI: http://doi.org/10.1016/S2213-8587(17)30357-1
Martineau A.R., Jolliffe D.A., Hooper R.L., Greenberg L., Aloia J.F., Bergman P., et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017; 356: i6583. DOI: http://doi.org/10.1136/bmj.i6583
Rejnmark L., Bislev L.S., Cashman K.D., Eiriksdottir G., Gaksch M., Grubler M., et al. Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLoS One. 2017; 12(7): e0180512. DOI: http://doi.org/10.1371/journal.pone.0180512
Bergman P., Lindh Å., Björkhem-Bergman L., Lindh J. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2013; 8(6): e65835. DOI: http://doi.org/10.1371/journal.pone.0065835
Charan J., Goyal J., Saxena D., Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J. Pharmacol. Pharmacother. 2012; 3(4): 300-3. DOI: http://doi.org/10.4103/0976-500X.103685
Vuichard Gysin D., Dao D., Gysin C.M., Lytvyn L., Loeb M. Effect of vitamin D3 supplementation on respiratory tract infections in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2016; 11(9): e0162996. DOI: http://doi.org/10.1371/journal.pone.0162996
Xiao L., Xing C., Yang Z., Xu S., Wang M., Du H., et al. Vitamin D supplementation for the prevention of childhood acute respiratory infections: A systematic review of randomised controlled trials. Br. J. Nutr. 2015; 114(7): 1026-34. DOI: http://doi.org/10.1017/S000711451500207
Yakoob M.Y., Salam R.A., Khan F.R., Bhutta Z.A. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst. Rev. 2016; 11(11): CD008824. DOI: http://doi.org/10.1002/14651858.CD008824.pub2
Dancer R.C., Parekh D., Lax S., D’Souza V., Zheng S., Bassford C.R., et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015; 70(7): 617-24. DOI: http://doi.org/10.1136/thoraxjnl-2014-206680
Han J.E., Jones J.L., Tangpricha V., Brown M.A., Brown L.A.S., Hao L., et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J. Clin. Transl. Endocrinol. 2016; 4: 59-65. DOI: http://doi.org/10.1016/j.jcte.2016.04.004
Yamshchikov A.V., Desai N.S., Blumberg H.M., Ziegler T.R., Tangpricha V. Vitamin D for treatment and prevention of infectious diseases: A systematic review of randomized controlled trials. Endocr. Pract. 2009; 15(5): 438-49. DOI: http://doi.org/10.4158/EP09101
Das R.R., Singh M., Naik S.S. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst. Rev. 2018; 7(7): CD011597. DOI: http://doi.org/101002/14651858
Theron M., Huang K.J., Chen Y.W., Liu C.C., Lei H.Y. A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine. 2005; 32(1): 30-8. DOI: http://doi.org/10.1016/j.cyto.2005.07.007
Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004; 136(1): 95-103. DOI: http://doi.org/10.1111/j.1365-2249.2004.02415
Mahallawi W.H., Khabour O.F., Zhang Q., Makhdoum H.M., Suliman B.A. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018; 104(1): 8-13. DOI: http://doi.org/10.1016/j.cyto.2018.01.025
Matricardi P.M., Dal Negro R.W., Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr. Allergy Immunol. 2020; 10.1111/pai.13271. DOI: http://doi.org/10.1111/pai.13271
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061-9. DOI: http://doi.org/10.3390/nu7064240
Greiller C.L., Martineau A.R. Modulation of the immune response to respiratory viruses by vitamin D. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015; 7(6): 4240-70. DOI: http://doi.org/10.3390/nu7064240
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. DOI: http://doi.org/10.1016/S0140-6736(20)30183-5
Garami A.R. Rapid response to: Preventing a COVID-19 pandemic. BMJ. 2020; 368: m810. DOI: http://doi.org/10.1136/bmj.m810
Hemilä H., Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013; (1): CD000980. DOI: http://doi.org/10.1002/14651858.CD000980.pub4
Moreira A., Kekkonen R.A., Delgado L., Fonseca J., Korpela R., Haahtela T. Nutritional modulation of exercise-induced immunodepression in athletes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2007; 61(4): 443-60. DOI: http://doi.org/10.1038/sj.ejcn.1602549
Hemilä H., Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013; (8): CD005532. DOI: http://doi.org/10.1002/14651858.CD005532.pub3
Hemilä H., Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J. Intensive Care. 2020; 8: 15. DOI: http://doi.org/10.1186/s40560-020-0432-y
Imdad A., Mayo-Wilson E., Herzer K., Bhutta Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2017; 3(3): CD008524. DOI: http://doi.org/10.1002/14651858.CD008524.pub2
Mathew J.L. Vitamin A supplementation for prophylaxis or therapy in childhood pneumonia: A systematic review of randomized controlled trials. Indian Pediatr. 2010; 47(2): 255-61. DOI: http://doi.org/10.1007/s13312-010-0042-1
Chen H., Zhuo Q., Yuan W., Wang J., Wu T. Vitamin A for preventing acute lower respiratory tract infections in children up to seven years of age. Cochrane Database Syst. Rev. 2008; (1): CD006090. DOI: http://doi.org/10.1002/14651858
Wu T., Ni J., Wei J. Vitamin A for non-measles pneumonia in children. Cochrane Database Syst. Rev. 2005; 2005(3): CD003700. DOI: http://doi.org/10.1002/14651858.CD003700.pub2
Glasziou P.P., Mackerras D.E. Vitamin A supplementation in infectious diseases: A meta-analysis. BMJ. 1993; 306(6874): 366-70. DOI: http://doi.org/10.1136/bmj.306.6874.366
Gammoh N.Z., Rink L. Zinc in Infection and Inflammation. Nutrients. 2017; 9(6):624. DOI: http://doi.org/10.3390/nu9060624
Baileya R.L., West K.P. Jr., Black R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015; 66(Suppl. 2): 22-33. DOI: http://doi.org/10.1159/000371618
Gulani A., Sachdev H.S. Zinc supplements for preventing otitis media. Cochrane Database Syst. Rev. 2014; (6): CD006639. DOI: http://doi.org/10.1002/14651858
Roth D.E., Richard S.A., Black R.E. Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: Meta-analysis and meta-regression of randomized trials. Int. J. Epidemiol. 2010; 39(3): 795-808. DOI: http://doi.org/10.1093/ije/dyp391
Aggarwal R., Sentz J., Miller M.A. Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis. Pediatrics. 2007; 119(6): 1120-30. DOI: http://doi.org/10.1542/peds.2006-3481
Hemilä H. Zinc lozenges may shorten the duration of colds: A systematic review. Open Respir. Med. J. 2011; 5: 51-8. DOI: http://doi.org/10.2174/1874306401105010051
Tie H.T., Tan Q., Luo M.Z., Li Q., Yu J.L., Wu Q.C. Zinc as an adjunct to antibiotics for the treatment of severe pneumonia in children №5 years: A meta-analysis of randomised-controlled trials. Br. J. Nutr. 2016; 115(5): 807-16. DOI: http://doi.org/10.1017/S0007114515005449
Das R.R., Singh M., Shafiq N. Short-term therapeutic role of zinc in children №5 years of age hospitalised for severe acute lower respiratory tract infection. Paediatr. Respir. Rev. 2012; 13(3): 184-91. DOI: http://doi.org/10.1016/j.prrv.2012.01.004
Haider B.A., Lassi Z.S., Ahmed A., Bhutta Z.A. Zinc supplementation as an adjunct to antibiotics in the treatment of pneumonia in children 2 to 59 months of age. Cochrane Database Syst. Rev. 2011; 2011(10): CD007368. DOI: http://doi.org/10.1002/14651858.CD007368.pub2
Basil М.C., Levy B.D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016; 16(1): 51-67. DOI: http://doi.org/10.1038/nri.2015.4
Gao Y., Zhang H., Luo L., Lin J., Li D., Zheng S., et al. Resolvin D1 improves the resolution of inflammation via activating NF-κB p50/p50-mediated Cyclooxygenase-2 expression in acute respiratory distress syndrome. J. Immunol. 2017; 199(6): 2043-54. DOI: http://doi.org/10.4049/jimmunol.1700315
Dushianthan A., Cusack R., Burgess V.A., Grocott M.P.W., Calder P.C. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev. 2019; 1(1): CD012041. DOI: http://doi.org/10.1002/14651858.CD012041
Schmoranzer F., Fuchs N., Markolin G., Carlin E., Sakr L., Sommeregger U. Influence of a complex micronutrient supplement on the immune status of elderly individuals. Int. J. Vitam. Nutr. Res. 2009; 79(5-6): 308-18. DOI: http://doi.org/10.1024/0300-9831.79.56.308
Спиричев В.Б. О биологических эффектах витамина D. Педиатрия, 2011;90(6):113-119. doi: 10.24411/0042-8833-2016-00066
Martinez-Estevez N.S., Alvarez-Guevara A.N., Rodriguez-Martinez C.E. Effects of zinc supplementation in the prevention of respiratory tract infections and diarrheal disease in Colombian children. Allergol. Immunopathol. (Madr.) 2016; 44(4): 368-75. DOI: http://doi.org/10.1016/j.aller.2015.12.006.
Ginde A.A., Blatchford P., Breese K., Zarrabi L., Linnebur S.A., Wallace J.I., et al. High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care residents: a randomized clinical trial. J. Am. Geriatr. Soc. 2017; 65(3): 496-503. DOI: http://doi.org/10.1111/jgs.14679
Johnston C., Barkyoumb G.M., Schumacher S.S. Vitamin C supplementations lightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: A randomized controlled trial. Nutrients. 2014; 6(7): 2572-83. DOI: http://doi.org/10.3390/nu6072572
Constantini N.W., Dubnov-Raz G., Eyal B.B., Berry E.M., Cohen A.H., Hemila H. The effect of vitamin C on upper respiratory infections in adolescent swimmers: A randomized trial. Eur. J. Pediatr. 2011; 170(1): 59-63. DOI: http://doi.org/10.1007/s00431-010-1270-z
Stephen A.I., Avenell A. A systematic review of multivitamin and multimineral supplementation for infection. J. Hum. Nutr. Diet. 2006; 19(3): 179-90. DOI: http://doi.org/10.1111/j.1365-277X.2006.00694.x
Wu D., Lewis E.D., Pae M., Meydani S.N. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front. Immunol. 2019; 9: 3160. DOI: http://doi.org/10.3389/fimmu.2018.03160
Hagel S., Ludewig K., Moeser A., Baier M., Loffler B., Schleenvoigt B., et al. Characteristics and management of patients with influenza in a German hospital during the 2014/2015 influenza season. Infection. 2016; 44(5): 667-72. DOI: http://doi.org/10.1007/s15010-016-0920-0
Wimalawansa S.J. Global epidemic of coronavirus-COVID-19: What we can do to minimize risks. Eur. J. Biomed. Pharm. Sci. 2020; 7(3): 432-8.
Youssef D.A., Ranasinghe T., Grant W.B., Peiris A.N. Vitamin D’s potential to reduce the risk of hospital-acquired infections. Derm. Endocrinol. 2012; 4(1): 167-75. DOI: http://doi.org/10.4161/derm.20789
Barazzoni R., Bischoff S.C., Breda J., Wickramasinghe K., Krznaric Z., Nitzan D., et al. ESPEN expert statements and practical guidance for nutritional management of individuals with sars-cov-2 infection. Clin. Nutr. 2020; 39(6): 1631-8. DOI: http://doi.org/10.1016/j.clnu.2020.03.022
Дополнительные файлы
Для цитирования:
For citation:
Обратные ссылки
- Обратные ссылки не определены

Контент доступен под лицензией Creative Commons Attribution 3.0 License.
ISSN: (Print)
ISSN: (Online)