ОСОБЕННОСТИ ОБМЕНА ЛИПИДОВ ПРИ HCV-ИНФЕКЦИИ
DOI:
Аннотация
Жизненный цикл вируса гепатита С (HCV) осуществляется при участии обмена липидов в клетках печени. Цель - провести обзор молекулярных механизмов липидного обмена в клетках печени при HCV-инфекции для определения их значения в формировании стеатоза печени. Результаты. Показано влияние HCV-инфекции на обмен липидов в гепатоцитах, взаимосвязь метаболитов холестерина и иммунного ответа на HCV-инфекцию, определены генетические аспекты липидного обмена при HCV-инфекции. Заключение. Внутрипеченочный жизненный цикл HCV существенно зависит от продукции холестерина и путей липогенеза. При инфицировании HCV активирует метаболизм липидов хозяина путем различных молекулярных механизмов, которые могут способствовать развитию стеатоза печени.
Об авторах
Волынец Галина ВасильевнаСписок литературы
Popescu C.I., Riva L., Vlaicu O., Farhat R., Rouillé Y., Dubuisson J. Hepatitis C virus life cycle and lipid metabolism. Biology (Basel) 2014; 3(4): 892-921. https://doi.org/10.3390/biology3040892
Modaresi Esfeh J., Ansari-Gilani K. Steatosis and hepatitis C. Gastroenterol. Rep. (Oxf.) 2016; 4(1): 24-9. https://doi.org/10.1093/gastro/gov040
Singaravelu R., O’Hara S., Jones D.M., Chen R., Taylor N.G., Srinivasan P., et al. MicroRNAs regulate the immunometabolic response to viral infection in the liver. Nat. Chem. Biol. 2015; 11(12): 988-93. https://doi.org/10.1038/nchembio.1940
Russell D.W. Oxysterol biosynthetic enzymes. Biochim. Biophys. Acta. 2000; 1529(1-3): 126-35. https://doi.org/10.1016/s1388-1981(00)00142-6
Syed G.H., Khan M., Yang S., Siddiqui A. Hepatitis C Virus lipoviroparticles assemble in the Endoplasmic Reticulum (ER) and bud off from the ER to the Golgi compartment in COPII Vesicles. J. Virol. 2017; 91(15): e00499-17. https://doi.org/10.1128/JVI.00499-17
Grove J., Nielsen S., Zhong J., Bassendine M.F., Drummer H.E., Balfe P., et al. Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J. Virol. 2008; 82(24): 12020-9. https://doi.org/10.1128/JVI.01569-08
Cheng J.J., Li J.R., Huang M.H., Ma L.L., Wu Z.Y., Jiang C.C., et al. CD36 is a co-receptor for hepatitis C virus E1 protein attachment. Sci. Rep. 2016; 6: 21808. https://doi.org/10.1038/srep21808
Flores R., Owens R.A., Taylor J. Pathogenesis by subviral agents: viroids and hepatitis delta virus. Curr. Opin. Virol 2016; 17: 87-94. https://doi.org/10.1016/j.coviro.2016.01.022
Feneant L., Levy S., Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses 2014; 6(2): 535-72. https://doi.org/10.3390/v6020535
Tong Y., Zhu Y., Xia X., Liu Y., Feng Y., Hua X., et al. Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection. J. Virol. 2011; 85(6): 2793-802. https://doi.org/10.1128/JVI.01818-10
Howell K.W., Meng X., Fullerton D.A., Jin C., Reece T.B., Cleveland J.C. Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J. Surg. Res. 2011; 171(1): e27-31. https://doi.org/10.1016/j.jss.2011.06.033
Westhaus S., Bankwitz D., Ernst S., Rohrmann K., Wappler I., Agné C., et al. Characterization of the inhibition of hepatitis C virus entry by in vitro-generated and patient-derived oxidized low-density lipoprotein. Hepatology. 2013; 57(5): 1716-24. https://doi.org/10.1002/hep.26190
Horner S.M. Activation and evasion of antiviral innate immunity by hepatitis C virus. J. Mol. Biol. 2014; 426(6): 1198-209. https://doi.org/10.1016/j.jmb.2013.10.032
Li K., Lemon S.M. Innate immune responses in hepatitis C virus infection. Semin. Immunopathol 2013; 35(1): 53-72. https://doi.org/10.1007/s00281-012-0332-x
Westbrook R.H., Dusheiko G. Natural history of hepatitis C. J. Hepatol. 2014; 61(1 Suppl.): S58-68. https://doi.org/10.1016/j.jhep.2014.07.012
Fierro N.A., Gonzalez-Aldaco K., Roman S., Panduro A. The immune system and viral hepatitis. In: Muriel P. Liver Pathophysiology: Therapies & Antioxidants. Waltham, MA: Elsevier; 2017: 129-39.
Fierro N.A., González-Aldaco K., Torres-Valadez R., Trujillo-Trujillo M.E., Roman S., Trujillo-Ochoa J.L., et al. Spontaneous hepatitis C viral clearance and hepatitis C chronic infection are associated with distinct cytokine profiles in Mexican patients. Mem. Inst. Oswaldo Cruz. 2015; 110(2): 267-71. https://doi.org/10.1590/0074-02760140377
Lund E.G., Kerr T.A., Sakai J., Li W.P., Russell D.W. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J. Biol. Chem. 1998; 273(51): 34316-27. https://doi.org/10.1074/jbc.273.51.34316
Xiang Y., Tang J.J., Tao W., Cao X., Song B.L., Zhong J. Identification of Cholesterol 25-Hydroxylase as a novel host restriction factor and a part of the primary innate immune responses against Hepatitis C Virus Infection. J. Virol. 2015; 89(13): 6805-16. https://doi.org/10.1128/JVI.00587-15
Park K., Scott A.L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 2010; 88(6): 1081-7. https://doi.org/10.1189/jlb.0610318
Janowski B.A., Willy P.J., Devi T.R., Falck J.R., Mangelsdorf D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996; 383(6602): 728-31. https://doi.org/10.1038/383728a0
Radhakrishnan A., Ikeda Y., Kwon H.J., Brown M.S., Goldstein J.L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA. 2007; 104(16): 6511-8. https://doi.org/10.1073/pnas.0700899104
Wahli W., Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 2012; 23(7): 351-63. https://doi.org/10.1016/j.tem.2012.05.001
Chen Y., Wang S., Yi Z., Tian H., Aliyari R., Li Y., et al. Interferon-inducible cholesterol-25-hydroxylase inhibits hepatitis C virus replication via distinct mechanisms. Sci. Rep. 2014; 4: 7242. https://doi.org/10.1038/srep07242
Wu J.M., Skill N.J., Maluccio M.A. Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma. HPB (Oxford). 2010; 12(9): 625-36. https://doi.org/10.1111/j.1477-2574.2010.00207.x
Yano M., Ikeda M., Abe K., Dansako H., Ohkoshi S., Aoyagi Y., et al. Comprehensive analysis of the effects of ordinary nutrients on hepatitis C virus RNA replication in cell culture. Antimicrob. Agents Chemother. 2007; 51(6): 2016-27. https://doi.org/10.1128/AAC.01426-06
McRae S., Iqbal J., Sarkar-Dutta M., Lane S., Nagaraj A., Ali N., et al. The Hepatitis C virus-induced NLRP3 inflammasome activates the Sterol Regulatory Element-binding Protein (SREBP) and regulates lipid metabolism. J. Biol. Chem. 2016; 291(7): 3254-3267. https://doi.org/10.1074/jbc.M115.694059
Shimano H. SREBPs: physiology and pathophysiology of the SREBP family. FEBS J. 2009; 276(3): 616-21. https://doi.org/10.1111/j.1742-4658.2008.06806.x
Chao T.C., Su W.C., Huang J.Y., Chen Y.C., Jeng K.S., Wang H.D., et al. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication. J. Virol. 2012; 86(3): 1739-49. https://doi.org/10.1128/JVI.06001-11
Romero-Brey I., Merz A., Chiramel A., Lee J.Y., Chlanda P., Haselman U., et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012; 8(12): e1003056. https://doi.org/10.1371/journal.ppat.1003056
Silbernagel G., Kovarova M., Cegan A., Machann J., Schick F., Lehmann R., et al. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J. Clin. Endocrinol. Metab. 2012; 97(12): E2288-92. https://doi.org/10.1210/jc.2012-2152
Lyn R.K., Singaravelu R., Kargman S., O’Hara S., Chan H., Oballa R., et al. Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Sci. Rep. 2014; 4: 4549. https://doi.org/10.1038/srep04549
Huang H., Sun F., Owen D.M., Li W., Chen Y., Gale M., et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl. Acad. Sci. USA. 2007; 104(14): 5848-53.
Simon A. Cholesterol metabolism and immunity. N. Engl. J. Med. 2014; 371(20): 1933-5. https://doi.org/10.1056/NEJMcibr1412016
Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017; 542(7640): 177-85. https://doi.org/10.1038/nature21363
Ogawa E., Furusyo N., Kajiwara E., Nomura H., Dohmen K., Takahashi K., et al. Influence of low-density lipoprotein cholesterol on virological response to telaprevir-based triple therapy for chronic HCV genotype 1b infection. Antiviral Res. 2014; 104: 102-9. https://doi.org/10.1016/j.antiviral.2014.01.004
Tall A.R., Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015; 15(2): 104-16. https://doi.org/10.1038/nri3793
Machida K., Cheng K.T., Sung V.M., Levine A.M., Foung S., Lai M.M. Hepatitis C virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon and interleukin-6. J. Virol. 2006; 80(2): 866-74. https://doi.org/10.1128/JVI.80.2.866-874.2006
Huang M., Jiang J.D., Peng Z. Recent advances in the anti-HCV mechanisms of interferon. Acta Pharm. Sin. B. 2014; 4(4): 241-7. https://doi.org/10.1016/j.apsb.2014.06.010
Tanaka T., Narazaki M., Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014; 6(10): a016295. https://doi.org/10.1101/cshperspect.a016295
Mackenzie J.M., Khromykh A.A., Parton R.G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe. 2007; 2(4): 229-39. https://doi.org/10.1016/j.chom.2007.09.003
Sheridan D.A., Bridge S.H., Felmlee D.J., Crossey M.M., Thomas H.C., Taylor-Robinson S.D., et al. Apolipoprotein-E and hepatitis C lipoviral particles in genotype 1 infection: evidence for an association with interferon sensitivity. J. Hepatol. 2012; 57(1): 32-8. https://doi.org/10.1016/j.jhep.2012.02.017
Townsend K., Meissner E.G., Sidharthan S., Sampson M., Remaley A.T., Tang L., et al. Interferon-free treatment of hepatitis C virus in HIV/Hepatitis C virus-coinfected subjects results in increased serum low-density lipoprotein concentration. AIDS Res. Hum. Retroviruses. 2016; 32(5): 456-62. https://doi.org/10.1089/AID.2015.0170
Grebely J., Feld J.J., Applegate T., Matthews G.V., Hellard M., Sherker A., et al. Plasma interferon-gamma-inducible protein-10 (IP-10) levels during acute hepatitis C virus infection. Hepatology. 2013; 57(6): 2124-34. https://doi.org/10.1002/hep.26263
Kotenko S.V., Gallagher G., Baurin V.V., Lewis-Antes A., Shen M., Shah N.K., et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003; 4(1): 69-77. https://doi.org/10.1038/ni875
O’Connor K.S., George J., Booth D., Ahlenstiel G. Dendritic cells in hepatitis C virus infection: key players in the IFNL3-genotype response. World J. Gastroenterol. 2014; 20(47): 17830-8. https://doi.org/10.3748/wjg.v20.i47.17830
Donnelly R.P., Dickensheets H., O’Brien T.R. Interferon-lambda and therapy for chronic hepatitis C virus infection. Trends Immunol. 2011; 32(9): 443-50. https://doi.org/10.1016/j.it.2011.07.002
Cacoub P. Extrahepatic manifestations of chronic hepatitis C virus infection. Ther. Adv. Infect. Dis. 2016; 3(1): 3-14. doi: 10.1177/2049936115585942
Ge D., Fellay J., Thompson A.J., Simon J.S., Shianna K.V., Urban T.J., et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009; 461(7262): 399-401. https://doi.org/10.1038/nature08309
Tanaka Y., Nishida N., Sugiyama M., Kurosaki M., Matsuura K., Sakamoto N., et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 2009; 41(10): 1105-9. https://doi.org/10.1038/ng.449
Thomas D.L., Thio C.L., Martin M.P., Qi Y., Ge D., O’Huigin C., et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009; 461(7265): 798-801. https://doi.org/10.1038/nature08463
Li J.H., Lao X.Q., Tillmann H.L., Rowell J., Patel K., Thompson A., et al. Interferon-lambda genotype and low serum low-density lipoprotein cholesterol levels in patients with chronic hepatitis C infection. Hepatology. 2010; 51(6): 1904-11. https://doi.org/10.1002/hep.23592
Phillips M.C. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014; 66(9): 616-23. https://doi.org/10.1002/iub.1314
Benga W.J., Krieger S.E., Dimitrova M., Zeisel M.B., Parnot M., Lupberger J., et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology. 2010; 51(1): 43-53. https://doi.org/10.1002/hep.23278
Mahley R.W., Rall S.C. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 2000; 1: 507-37. https://doi.org/10.1146/annurev.genom.1.1.507
Roman S., Ojeda-Granados C., Ramos-Lopez O., Panduro A. Genome-based nutrition: An intervention strategy for the prevention and treatment of obesity and nonalcoholic steatohepatitis. World J. Gastroenterol. 2015; 21(12): 3449-61. https://doi.org/10.3748/wjg.v21.i12.3449
Price D.A., Bassendine M.F., Norris S.M., Golding C., Toms G.L., Schmid M.L., et al. Apolipoprotein epsilon3 allele is associated with persistent hepatitis C virus infection. Gut. 2006; 55(5): 715-8. https://doi.org/10.1136/gut.2005.079905
Wozniak M.A., Itzhaki R.F., Faragher E.B., James M.W., Ryder S.D., Irving W.L. Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus. Hepatology. 2002; 36(2): 456-63. https://doi.org/10.1053/jhep.2002.34745
Lye S.H., Chahil J.K., Bagali P., Alex L., Vadivelu J., Ahmad W.A., et al. Genetic polymorphisms in LDLR, APOB, PCSK9 and other lipid related genes associated with familial hypercholesterolemia in Malaysia. PLoS One. 2013; 8(4): e60729. https://doi.org/10.1371/journal.pone.0060729
Syed G.H., Tang H., Khan M., Hassanein T., Liu J., Siddiqui A. Hepatitis C virus stimulates low-density lipoprotein receptor expression to facilitate viral propagation. J. Virol. 2014; 88(5): 2519-29. https://doi.org/10.1128/JVI.02727-13
Caruz A., Neukam K., Rivero-Juárez A., Herrero R., Real L.M., Camacho A., et al. Association of low-density lipoprotein receptor genotypes with hepatitis C viral load. Genes Immun. 2014; 15(1): 16-24. https://doi.org/10.1038/gene.2013.56
Pineda J.A., Caruz A., Di Lello F.A., Camacho A., Mesa P., Neukam K., et al. Low-density lipoprotein receptor genotyping enhances the predictive value of IL28B genotype in HIV/hepatitis C virus-coinfected patients. AIDS. 2011; 25(11): 1415-20. https://doi.org/10.1097/QAD.0b013e328348a7ac
Albecka A., Belouzard S., Op de Beeck A., Descamps V., Goueslain L., Bertrand-Michel J., et al. Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology. 2012; 55(4): 998-1007. https://doi.org/10.1002/hep.25501
Schertzer J.D., Steinberg G.R. Immunometabolism: the interface of immune and metabolic responses in disease. Immunol. Cell Biol. 2014; 92(4): 303. https://doi.org/10.1038/icb.2014.12
François-Souquière S., Makuwa M., Bisvigou U., Kazanji M. Epidemiological and molecular features of hepatitis B and hepatitis delta virus transmission in a remote rural community in central Africa. Infect. Genet. Evol. 2016; 39: 12-21. https://doi.org/10.1016/j.meegid.2015.12.021
Felmlee D.J., Hafirassou M.L., Lefevre M., Baumert T.F., Schuster C. Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses. 2013; 5(5): 1292-324. https://doi.org/10.3390/v5051292
Leu G.Z., Lin T.Y., Hsu J.T. Anti-HCV activities of selective polyunsaturated fatty acids. Biochem. Biophys. Res. Commun. 2004; 318(1): 275-80. https://doi.org/10.1016/j.bbrc.2004.04.019
Poli G., Biasi F., Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013; 1(1): 125-30. https://doi.org/10.1016/j.redox.2012.12.001
Syed G.H., Amako Y., Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol. Metab. 2010; 21(1): 33-40. https://doi.org/10.1016/j.tem.2009.07.005
Schertzer J.D., Steinberg G.R. Immunometabolism: the interface of immune and metabolic responses in disease. Immunol. Cell Biol. 2014; 92(4): 303. https://doi.org/10.1038/icb.2014.12
Дополнительные файлы
Для цитирования:
For citation:
Обратные ссылки
- Обратные ссылки не определены

Контент доступен под лицензией Creative Commons Attribution 3.0 License.
ISSN: (Print)
ISSN: (Online)