Mäyränpää M.K., Viljakainen H.T., Toiviainen-Salo S., Kallio P.E., Mäkitie O. Impaired bone health and asymptomatic vertebral compressions in fracture-prone children: a case-control study. J Bone Miner Res. 2012; 27(6): 1413-24. https://doi.org/10.1002/jbmr.1579
Huisman T.A., Poretti A. Trauma. Handb Clin Neurol. 2016;136:1199-220. https://doi.org/10.1016/B978-0-444-53486-6.00062-4
Сороковиков В.А., Стемплевский О.П., Бянкин В.Ф., Алексеева Н.В. Клиника, диагностика и лечение повреждений позвоночника у детей. Acta biomedica scientifica. 2018; 3(2): 68-74. https://doi.org/10.29413/ABS.2018-3.2.12
Mikrogianakis A., Grant V. The Kids Are Alright: Pediatric Trauma Pearls. Emerg Med Clin North Am. 2018; 36(1): 237-57. https://doi.org/10.1016/j.emc.2017.08.015
Traylor K.S., Kralik S.F., Radhakrishnan R. Pediatric Spine Emergencies. Semin Ultrasound CT MR. 2018; 39(6): 605-17. https://doi.org/10.1053/j.sult.2018.09.002
Хусаинов Н.О., Виссарионов С.В. Компрессионные переломы позвоночника у детей: не пора ли что-то менять? Хирургия позвоночника. 2019; 16(4): 6-12. https://doi.org/10.14531/ss2019.4.6-12
Меркулов В.Н., Бычкова В.С., Мининков Д.С. Современный подход к диагностике компрессионных переломов тел позвонков у детей и подростков. Детская хирургия. 2012; 4: 49-51.
Скрябин Е.Г., Смирных А.Г., Буксеев А.Н., Аксельров М.А., Наумов С.В., Сидоренко А.В. и др. Множественные переломы тел позвонков у детей и подростков. Политравма. 2020; 3: 45-53. https://doi.org/10.24411/1819-1495-2020-10032
Weiß T., Disch A.C., Kreinest M., Jarvers J.S., Herren C., Jung M.K. et al. Diagnostics and treatment of thoracic and lumbar spine trauma in pediatric patients: Recommendations from the Pediatric Spinal Trauma Group. Unfallchirurg. 2020; 123(4): 269-79. https://doi.org/10.1007/s00113-020-00790-x
Крохина К.Н., Смирнов И.Е., Беляева И.А. Особенности формирования костной ткани у новорожденных детей. Российский педиатрический журнал. 2010; 5: 36-41.
Vaněk P., Kaiser R., Saur K., Beneš V. History, development and use of classification of thoracolumbar spine fractures. Rozhl Chir. 2020; 99(1): 15-21. https://doi.org/10.33699/PIS.2020.99.1.15-21
Daniels A.H., Sobel A.D., Eberson C.P. Pediatric thoracolumbar spine trauma. J Am Acad Orthop Surg. 2013; 21(12): 707-16. https://doi.org/10.5435/JAAOS-21-12-707
Hardy E., Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol. 2020; 11: 47. https://doi.org/10.3389/fphys.2020.00047
Hussein A.I., Mancini C., Lybrand K.E., Cooke M.E., Matheny H.E., Hogue B.L., et al. Serum proteomic assessment of the progression of fracture healing. J Orthop Res. 2018; 36(4): 1153-63. https://doi.org/10.1002/jor.23754
Azevedo A., Prado A.F., Feldman S., de Figueiredo F.A.T., Dos Santos M.C.G., Issa J.P.M. MMPs are Involved in Osteoporosis and are Correlated with Cardiovascular Diseases. Curr Pharm Des. 2018; 24(16): 1801-10. https://doi.org/10.2174/1381612824666180604112925
Смирнов И.Е., Рошаль Л.М., Кучеренко А.Г., Карасева О.В. Понина И.В. Изменения содержания костных биомаркеров в сыворотке крови при сочетанной травме у детей. Российский педиатрический журнал. 2017; 20(6): 371-8. https://doi.org/10.18821/1560-9561-2017-20-6-371-378
Wigner N.A., Kulkarni N., Yakavonis M., Young M., Tinsley B., Meeks B. et al. Urine matrix metalloproteinases (MMPs) as biomarkers for the progression of fracture healing. Injury. 2012; 43(3): 274-8. https://doi.org/10.1016/j.injury.2011.05.038
Vilaca T., Gossiel F., Eastell R. Bone Turnover Markers: Use in Fracture Prediction. J Clin Densitom. 2017; 20(3): 346-52. https://doi.org/10.1016/j.jocd.2017.06.020
Oh T., Naka T. Comparison of bone metabolism based on the different ages and competition levels of junior and high school female rhythmic gymnasts. J Exerc Nutrition Biochem. 2017; 21(2): 9-15.
Liu C., Cui X., Ackermann T.M., Flamini V., Chen W., Castillo A.B. Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation. Integr Biol (Camb). 2016; 8(7): 785-94.
Franceschi R.T., Ge C. Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling. Curr Mol Biol Rep. 2017; 3(2): 122-32.
Yang S.Y., Strong N., Gong X., Heggeness M.H. Differentiation of nerve-derived adult pluripotent stem cells into osteoblastic and endothelial cells. Spine J. 2017; 17(2): 277-81.
Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol Chem. 2003; 384(6): 863-72. https://doi.org/10.1515/BC.2003.097
Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006; 69(3): 562-73. https://doi.org/10.1016/j.cardiores.2005.12.002
Panwar P., Butler G.S., Jamroz A., Azizi P., Overall C.M., Brömme D. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biol. 2017. pii: S0945-053X(17)30130-0. https://doi.org/10.1016/j.matbio.2017.06.004
Movilla N., Borau C., Valero C., García-Aznar J.M. Degradation of extracellular matrix regulates osteoblast migration: A microflui-dic-based study. Bone. 2017; 107(1): 10-7.
Paiva K.B.S., Granjeiro J.M. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog Mol Biol Transl Sci. 2017; 148: 203-303. https://doi.org/10.1016/bs.pmbts.2017.05.001
Van den Steen P.E., Dubois B., Nelissen I., Rudd P.M., Dwek R.A., Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9).Crit Rev Biochem Mol Biol. 2002; 37(6): 375-536. https://doi.org/10.1080/10409230290771546
Vandooren J., Van den Steen P.E., Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013; 48(3): 222-72. https://doi.org/10.3109/10409238.2013.770819
Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003; 92(8): 827-39. https://doi.org/10.1161/01.RES.0000070112.80711.3D
Crane JL, Xian L, Cao X. Role of TGF-β Signaling in Coupling Bone Remodeling. Methods Mol Biol. 2016; 1344: 287-300. https://doi.org/10.1007/978-1-4939-2966-5_18
Crane J.L., Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest. 2014; 124(2): 466-72. https://doi.org/10.1172/JCI70050
Liao H.T., Chen C.T. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells. 2014; 6(3): 288-95.
Hussein A.I., Mancini C., Lybrand K.E., Cooke M.E., Matheny H.E., Hogue B.L. et al. Serum proteomic assessment of the progression of fracture healing. J Orthop Res. 2018; 36(4): 1153-63. https://doi.org/10.1002/jor.23754
Wang T., Zhang X., Bikle D.D. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol. 2017; 232(5): 913-21. https://doi.org/10.1002/jcp.25641
Schnake K.J., Schroeder G.D., Vaccaro A.R., Oner C. AOSpine Classification Systems (Subaxial, Thoracolumbar). J Orthop Trauma. 2017; 31(Suppl 4): 14-23. https://doi.org/10.1097/BOT.0000000000000947
Баиндурашвили А.Г., Виссарионов С.В., Павлов И.В., Кокушин Д.Н., Леин Г.А. Консервативное лечение детей с компрессионными переломами позвонков грудной и поясничной локализации в Российской Федерации. Ортопедия, травматология и восстановительная хирургия детского возраста. 2016; 4(1): 48-56. https://doi.org/10.17816/ptors4148-56
Spiegl U.J., Fischer K., Schmidt J., Schnoor J., Delank S., Josten C., et al. The Conservative Treatment of Traumatic Thoracolumbar Vertebral Fractures. Dtsch Arztebl Int. 2018; 115(42): 697-704. https://doi.org/10.3238/arztebl.2018.0697
Kyriakou A., Shepherd S., Mason A., S Faisal A. Prevalence of Vertebral Fractures in Children with Suspected Osteoporosis. J Pediatr. 2016; 179: 219-25. https://doi.org/10.1016/j.jpeds.2016.08.075
Grover M., Bachrach L.K. Osteoporosis in Children with Chronic Illnesses: Diagnosis, Monitoring, and Treatment. Curr Osteoporos Rep.2017; 15(4): 271-82. https://doi.org/10.1007/s11914-017-0371-2
Yuasa M., Saito M., Molina C., Moore-Lotridge S.N., Benvenuti M.A., Mignemi N.A., et al. Unexpected timely fracture union in matrix metalloproteinase 9 deficient mice. PLoS One. 2018;13(5):e0198088. https://doi.org/10.1371/journal.pone.0198088.
Tamminen I.S., Mäyränpää M.K., Turunen M.J., Isaksson H, Mäkitie O., Jurvelin J.S. et al. Altered bone composition in children with vertebral fracture. J Bone Miner Res. 2011; 26(9): 2226-34. https://doi.org/10.1002/jbmr.409
Garcia I., Chiodo V., Ma Y., Boskey A. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connect Tissue Res. 2016; 57(1): 28-37. https://doi.org/10.3109/03008207.2015.1088531
Adler D., Jarvers J.S., Tschoeke S.K., Siekmann H. Posttraumatic vertebral disc alterations after B and C type spinal injuries in childhood-Clinical and radiological 10-year results for two cases.Unfallchirurg. 2020; 123(4): 302-8. https://doi.org/10.1007/s00113-020-00780-z
Телешов Н.В., Саруханян О.О. Неосложненная травма тел позвонков у детей. Медицинский алфавит. 2014; 9: 42-7.
Alqahtani F.F., Offiah A.C. Diagnosis of osteoporotic vertebral fractures in children. Pediatr Radiol. 2019; 49(3): 283-96. https://doi.org/10.1007/s00247-018-4279-5
Xu W.L., Zhao Y. Comprehensive analysis of lumbar disc degeneration and autophagy-related candidate genes, pathways, and targeting drugs. J Orthop Surg Res. 2021; 16(1): 252. https://doi.org/10.1186/s13018-021-02417-2
Hsu H.T., Yue C.T., Teng M.S., Tzeng I.S., Li T.C., Tai P.A., et al. Immunohistochemical score of matrix metalloproteinase-1 may indicate the severity of symptomatic cervical and lumbar disc degeneration. Spine J. 2020; 20(1): 124-37. https://doi.org/10.1016/j.spinee.2019.08.004
Wang Y., Dai G., Jiang L., Liao S., Xia J. Microarray analysis reveals an inflammatory transcriptomic signature in peripheral blood for sciatica. BMC Neurol. 2021; 21(1): 50. https://doi.org/10.1186/s12883-021-02078-y
Arpino V., Brock M., Gill S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015; 44-46: 247-54. https://doi.org/10.1016/j.matbio.2015.03.005
Ardi V.C., Kupriyanova T.A., Deryugina E.I., Quigley J.P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA. 2007; 104(51): 20262-7. https://doi.org/10.1073/pnas.0706438104
Zhang J.F., Wang G.L., Zhou Z.J., Fang X.Q., Chen S., Fan S.W. Expression of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Interleukins in Vertebral Cartilage Endplate. Orthop Surg. 2018; 10(4): 306-11. https://doi.org/10.1111/os.12409
Li H.R., Cui Q., Dong Z.Y., Zhang J.H., Li H.Q., Zhao L. Downregulation of miR-27b is Involved in Loss of Type II Collagen by Directly Targeting Matrix Metalloproteinase 13 (MMP13) in Human Intervertebral Disc Degeneration. Spine (Phila Pa 1976). 2016; 41(3): 116-23. https://doi.org/10.1097/BRS.0000000000001139
Stevens D.A., Hasserjian R.P., Robson H., Siebler T., Shalet S.M., Williams G.R. Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res. 2000; 15(12): 2431-42. doi:10.1359/jbmr.2000.15.12.2431
Limmer A., Wirtz D.C. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption. Z Orthop Unfall. 2017; 155(3): 273-80.
Bigham-Sadegh A., Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int Wound J. 2015; 12(3): 238-47. https://doi.org/10.1111/iwj.12231
Wahl E.P., Lampley A.J., Chen A., Adams S.B., Nettles D.L., Richard M.J. Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular elbow fracture. J Shoulder Elbow Surg. 2020; 29(4): 736-42. https://doi.org/10.1016/j.jse.2019.09.024