MODELING OF THE SANOGENETIC DEVELOPING ENVIRONMENT AND STARTING NON-DRUG HABILITATION OF PREMATURE INFANTS
DOI:
Abstract
The review presents modern data on postnatal adaptation in infants born prematurely, which are characterized by “catching up” the pace of development. It is shown that the conditionally early neonatal period in extremely immature infants can stretch up to 3-4 months of the postnatal life, which is associated with a high risk of adaptation failures with inadequate environmental influences, but at the same time is the basis for a mild aimed correction of perinatal brain damage. Functionally immature structures of the central nervous system of a premature baby were been established to have pronounced plasticity, which can be considered as the ability of the nervous system of a growing organism to reorganize. Plasticity of the nervous system is associated with increased expression of a large complex of neurotrophic biologically active compounds - protein and peptide growth factors of nervous tissue, which intensify the growth and development of nerve cells. At the early stages of the development, changes in the microenvironment of the child and the environment can change the morphofunctional properties of the central nervous system, the rate of psychomotor development, and the behavior of the newborn too significantly. The urgency of the problem is associated with a high incidence of disability in infants born prematurely, as well as with the undesirability of drug loading on an immature organism. The effectiveness of new methods of physical treatment, including weightlessness modeling and positional therapy, as well as the need for active participation of the family in the process of child rehabilitation and in creating a sensory-developing environment, is presented.
About the authors
Basargina Milana A.Fisenko A.P.
Bombardirova E.P.
Smirnov I.E.
Kharitonova N.A.
Illarionova M.S.
References
Ганузин В.М., Голубятникова Е.В. Детская инвалидность, профилактика, реабилитация и абилитация детей с ограниченными возможностями. Вопросы психического здоровья детей и подростков. 2017;17(2):55-6.
Coq JO, Kochmann M, Lacerda DC, Khalki H, Delcour M, Toscano AE et al. From cerebral palsy to developmental coordination disorder: Development of preclinical rat models corresponding to recent epidemiological changes. Ann Phys Rehabil Med. 2019. doi: 10.1016/j.rehab.2019.10.002.
Durán-Carabali LE, Sanches EF, Reichert L, Netto CA. Enriched experience during pregnancy and lactation protects against motor impairments induced by neonatal hypoxia-ischemia. Behav Brain Res. 2019;367:189-193. doi: 10.1016/j.bbr.2019.03.048.
Dupré N, Arabo A, Orset C, Maucotel J, Detroussel Y, Hauchecorne M et al. Neonatal cerebral hypoxia-ischemia in mice triggers age-dependent vascular effects and disabilities in adults; implication of tissue plasminogen activator (tPA). Exp Neurol. 2020; 323:113087. doi: 10.1016/j.expneurol.2019.113087.
Austin T. The development of neonatal neurointensive care. Pediatr Res. 2019. doi: 10.1038/s41390-019-0729-5.
Зайниддинова Р.С., Смирнов И.Е., Иванов В.А. Перинатальные гипоксические поражения головного мозга у детей. Российский педиатрический журнал. 2011; 2: 23-29.
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci. 2017;11:78. doi: 10.3389/fncel.2017.00078.
Thei L, Rocha-Ferreira E, Peebles D, Raivich G, Hristova M. Extracellular signal-regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic-ischaemic cerebral injury. J Physiol. 2018;596(23):6043-6062. doi: 10.1113/JP275649.
Carrasco M, Stafstrom CE. How Early Can a Seizure Happen? Pathophysiological Considerations of Extremely Premature Infant Brain Development. Dev Neurosci. 2018;40(5-6):417-436. doi: 10.1159/000497471.
Сюткина Е.В., Смирнов И.Е., Митиш М.Д. Артериальное давление у детей в периоде новорожденности и в школьном возрасте. Российский педиатрический журнал. 2012; 3: 3-7.
Суржик А.В., Сюткина Е.В., Смирнов И.Е., Митиш М.Д. Ритмическая структура прибавки массы тела новорожденных детей и особенности их физического развития в старшем возрасте. Российский педиатрический журнал. 2009; 6:12-15.
Смирнов И.Е., Нечаева Н.Л., Кучеренко А.Г., Кузенкова Л.М. Факторы риска и маркеры эндотелиальной дисфункции у детей, перенесших острое нарушение мозгового кровообращения. Российский педиатрический журнал. 2014; 1: 9-14.
Пак Л.А., Кузенкова Л.М., Фисенко А.П., Куренков А.Л. Детский церебральный паралич: клинические и инструментальные характеристики. Российский педиатрический журнал. 2019;22(1):4-11.
Angsupaisal M., Maathuis C.G., Hadders-Algra M. Adaptive seating systems in children with severe cerebral palsy across International Classification of Functioning, Disability and Health for Children and Youth version domains: a systematic review. Dev Med Child Neurol. 2015; 57(10): 919-30.
Hedderich DM, Bäuml JG, Menegaux A, Avram M, Daamen M, Zimmer C et al. An analysis of MRI derived cortical complexity in premature-born adults: Regional patterns, risk factors, and potential significance. Neuroimage. 2019:116438. doi: 10.1016/j.neuroimage.2019.116438.
Бомбардирова Е.П., Яцык Г.В., Зайниддинова Р.С. Немедикаментозные методы восстановительного лечения детей с перинатальным поражением нервной системы. Российский педиатрический журнал. 2011;3:55-60.
Смирнов И.Е., Ровенская Ю.В., Кучеренко А.Г., Зайниддинова Р.С., Иванов В.А., Акоев Ю.С. Нейроспецифические биомаркеры в диагностике последствий перинатальных поражений нервной системы у детей 1-го года жизни. Российский педиатрический журнал. 2011; 2: 4-7.
Cai S, Thompson DK, Anderson PJ, Yang JY. Short- and Long-Term Neurodevelopmental Outcomes of Very Preterm Infants with Neonatal Sepsis: A Systematic Review and Meta-Analysis. Children (Basel). 2019;6(12).doi: 10.3390/children6120131.
Cainelli E, Di Bono MG, Bisiacchi PS, Suppiej A. Electroencephalographic functional connectivity in extreme prematurity: a pilot study based on graph theory. Pediatr Res. 2019. doi: 10.1038/s41390-019-0621-3.
Kline JE, Illapani VSP, He L, Altaye M, Logan JW, Parikh NA. Early cortical maturation predicts neurodevelopment in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019. doi: 10.1136/archdischild-2019-317466.
Tandircioglu UA, Guzoglu N, Gucuyener K, Aliefendioglu D. Influence of Intensive Care Unit Enlightenment on Premature Infants on Functional Brain Maturation Assessed by Amplitude-Integrated Electroencephalograph. Am J Perinatol. 2019. doi: 10.1055/s-0039-1697681.
Nourhashemi M, Mahmoudzadeh M, Goudjil S, Kongolo G, Wallois F. Neurovascular coupling in the developing neonatal brain at rest. Hum Brain Mapp. 2019. doi: 10.1002/hbm.24818.
Barkovich MJ, Barkovich AJ. MR Imaging of Normal Brain Development. Neuroimaging Clin N Am. 2019;29(3):325-337. doi: 10.1016/j.nic.2019.03.007.
Caeyenberghs K, Clemente A, Imms P, Egan G, Hocking DR, Leemans A et al. Evidence for Training-Dependent Structural Neuroplasticity in Brain-Injured Patients: A Critical Review. Neurorehabil Neural Repair. 2018;32(2):99-114. doi: 10.1177/1545968317753076.
Tsai SJ. Role of neurotrophic factors in attention deficit hyperactivity disorder. Cytokine Growth Factor Rev. 2017;34:35-41. doi: 10.1016/j.cytogfr.2016.11.003.
Maeda T, Iwata H, Sekiguchi K, Takahashi M, Ihara K. The association between brain morphological development and the quality of general movements. Brain Dev. 2019;41(6):490-500. doi: 10.1016/j.braindev.2019.01.007.
Sun S, Diggins NH, Gunderson ZJ, Fehrenbacher JC, White FA, Kacena MA. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone. 2019;131:115109. doi: 10.1016/j.bone.2019.115109.
Kelly CE, Thompson DK, Chen J, Josev EK, Pascoe L, Spencer-Smith MM et al. Working memory training and brain structure and function in extremely preterm or extremely low birth weight children. Hum Brain Mapp. 2019. doi: 10.1002/hbm.24832.
Nordvik JE, Walle KM, Nyberg CK, Fjell AM, Walhovd KB, Westlye LT, Tornas S. Bridging the gap between clinical neuroscience and cognitive rehabilitation: the role of cognitive training, models of neuroplasticity and advanced neuroimaging in future brain injury rehabilitation. NeuroRehabilitation. 2014;34(1):81-5. doi: 10.3233/NRE-131017.
Krägeloh-Mann I., Lidzba K., Pavlova М.А., Wilke М. Plasticity during early brain development is determined by ontogenetic potential. Neuropediatrics. 2017,48(02). DOI: 10.1055/s-0037-1599234.
Faravelli I, Costamagna G, Tamanini S, Corti S. Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Res. 2019:146561. doi: 10.1016/j.brainres.2019.146561.
Borjini N, Sivilia S, Giuliani A, Fernandez M, Giardino L, Facchinetti F. et al. Potential biomarkers for neuroinflammation and neurodegeneration at short and long term after neonatal hypoxic-ischemic insult in rat. J Neuroinflammation. 2019;16(1):194. doi: 10.1186/s12974-019-1595-0.
Parikh NA, Hershey A, Altaye M. Early Detection of Cerebral Palsy Using Sensorimotor Tract Biomarkers in Very Preterm Infants. Pediatr Neurol. 2019;98:53-60. doi: 10.1016/j.pediatrneurol.2019.05.001.
Lejeune F, Lordier L, Pittet MP, Schoenhals L, Grandjean D, Hüppi PS et al. Effects of an Early Postnatal Music Intervention on Cognitive and Emotional Development in Preterm Children at 12 and 24 Months: Preliminary Findings. Front Psychol. 2019;10:494. doi: 10.3389/fpsyg.2019.00494.
Volpe JJ. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr Neurol. 2019;95:42-66. doi: 10.1016/j.pediatrneurol.2019.02.016.
Schneider J, Miller SP. Preterm brain Injury: White matter injury. Handb Clin Neurol. 2019;162:155-172. doi: 10.1016/B978-0-444-64029-1.00007-2.
Neel ML, Yoder P, Matusz PJ, Murray MM, Miller A, Burkhardt S. Randomized controlled trial protocol to improve multisensory neural processing, language and motor outcomes in preterm infants. BMC Pediatr. 2019;19(1):81. doi: 10.1186/s12887-019-1455-1.
Burnett AC, Youssef G, Anderson PJ, Duff J, Doyle LW8, Cheong JLY. Exploring the “Preterm Behavioral Phenotype” in Children Born Extremely Preterm. J Dev Behav Pediatr. 2019;40(3):200-207. doi: 10.1097/DBP.0000000000000646.
Dennis M. Margaret Kennard (1899-1975): not a ‘principle’ of brain plasticity but a founding mother of developmental neuropsychology. Cortex. 2010, 46(8) 1043-1059;
Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci Learn. 2019;4:9. doi: 10.1038/s41539-019-0048-y.
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol. 2019;53:100744. doi: 10.1016/j.yfrne.2019.04.001.
Lee TW, Montgomery JM, Birch NP. The serine protease inhibitor neuroserpin regulates the growth and maturation of hippocampal neurons through a non-inhibitory mechanism. J Neurochem. 2012;121(4):561-74. doi: 10.1111/j.1471-4159.2011.07639.x.
Man HY, Ma XM. A role for neuroserpin in neuron morphological development. J Neurochem. 2012;121(4):495-6. doi: 10.1111/j.1471-4159.2012.07655.x.
Hermann M, Reumann R, Schostak K, Kement D, Gelderblom M, Bernreuther C. et al. Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Mol Cell Neurosci. 2019;102:103420. doi: 10.1016/j.mcn.2019.103420.
Wood T, Moralejo D, Corry K, Fisher C, Snyder JM, Acuna V et al. A Ferret Model of Inflammation-sensitized Late Preterm Hypoxic-ischemic Brain Injury. J Vis Exp. 2019;(153). doi: 10.3791/60131.
Li H, Li X, Liu Z, Wu S, Guo J, Shi R. et al. Resveratrol Reserved Hypoxia-Ischemia Induced Childhood Hippocampal Dysfunction and Neurogenesis via Improving Mitochondrial Dynamics. Neurosci Res. 2019. doi: 10.1016/j.neures.2019.11.012.
Wang X, Wang Y, Wang L, Shi S, Yang C, Jiang W. Oligogenesis in the “oligovascular unit” involves PI3K/AKT/mTOR signaling in hypoxic-ischemic neonatal mice. Brain Res Bull. 2019;155:81-91. doi: 10.1016/j.brainresbull.2019.11.013.
Bull-Larsen S, Mohajeri MH. The Potential Influence of the Bacterial Microbiome on the Development and Progression of ADHD. Nutrients. 2019;11(11). doi: 10.3390/nu11112805.
Cormack BE, Harding JE, Miller SP, Bloomfield FH. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients. 2019;11(9). doi: 10.3390/nu11092029.
Ottolini KM, Andescavage N, Keller S, Limperopoulos C. Nutrition and the developing brain: the road to optimizing early neurodevelopment: a systematic review. Pediatr Res. 2019. doi: 10.1038/s41390-019-0508-3.
Cowan CSM, Stylianakis AA, Richardson R. Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev Cogn Neurosci. 2019;37:100627. doi: 10.1016/j.dcn.2019.100627.
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev. 2019;148:19-37. doi: 10.1016/j.addr.2019.10.005.
Iorfino F, Cross SP, Davenport T, Carpenter JS, Scott E, Shiran S, Hickie IB. A Digital Platform Designed for Youth Mental Health Services to Deliver Personalized and Measurement-Based Care. Front Psychiatry. 2019;10:595. doi: 10.3389/fpsyt.2019.00595.
Сухарева Л.М. Актуальные проблемы гигиены и охраны здоровья детей и подростков в развитии научной платформы «Профилактическая среда». Вопросы школьной и университетской медицины и здоровья. 2015; 3:10-12.
Lordier L, Loukas S, Grouiller F, Vollenweider A, Vasung L, Meskaldij DE et al. Music processing in preterm and full-term newborns: A psychophysiological interaction (PPI) approach in neonatal fMRI. Neuroimage. 2019;185:857-864. doi: 10.1016/j.neuroimage.2018.03.078
Lordier L, Meskaldji DE, Grouiller F, Pittet MP, Vollenweider A, Vasung L. et al. Music in premature infants enhances high-level cognitive brain networks. Proc Natl Acad Sci USA. 2019;116(24):12103-12108. doi: 10.1073/pnas.1817536116.
Risso FM, Sannia A, Gavilanes DA, Vles HJ, Colivicchi M, Ricotti A. et al. Biomarkers of brain damage in preterm infants. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:101-4. doi: 10.3109/14767058.2012.715024.
Hedderich DM, Bäuml JG, Berndt MT, Menegaux A, Scheef L, Daamen M. et al. Aberrant gyrification contributes to the link between gestational age and adult IQ after premature birth. Brain. 2019;142(5):1255-1269. doi: 10.1093/brain/awz071.
Sa de Almeida J, Lordier L, Zollinger B, Kunz N, Bastiani M, Gui L. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage. 2019;207:116391. doi: 10.1016/j.neuroimage.2019.116391.
Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019;142:113-122. doi: 10.1016/j.freeradbiomed.2019.04.028.
Chorna O, Filippa M, De Almeida JS, Lordier L, Monaci MG, Hüppi P et al. Neuroprocessing Mechanisms of Music during Fetal and Neonatal Development: A Role in Neuroplasticity and Neurodevelopment. Neural Plast. 2019;2019:3972918. doi: 10.1155/2019/3972918.
Nassel D, Chartrand C, Doré-Bergeron MJ, Lefebvre F, Ballantyne M, Van Overmeire B. et al. Very Preterm Infants with Technological Dependence at Home: Impact on Resource Use and Family. Neonatology. 2019;115(4):363-370. doi: 10.1159/000496494.
Pados BF, McGlothen-Bell K. Benefits of Infant Massage for Infants and Parents in the NICU. Nurs Womens Health. 2019;23(3):265-271. doi: 10.1016/j.nwh.2019.03.004.
Taheri PA, Goudarzi Z, Shariat M, Nariman S, Matin EN. The effect of a short course of moderate pressure sunflower oil massage on the weight gain velocity and length of NICU stay in preterm infants. Infant Behav Dev. 2018;50:22-27. doi: 10.1016/j.infbeh.2017.11.002.
Gasparrini E, Rosati F, Gaetti MT. Long-term follow-up of newborns at neurological risk. Ital J Pediatr. 2019;45(1):38. doi: 10.1186/s13052-019-0629-7.
Стребелева Е.А. Психолого-педагогическая диагностика развития детей раннего и дошкольного возраста. М. Просвещение, 2005;84.
Амирханова Д.Ю., Ушакова Л.В., Дегтярева А.В., Филиппова Е.А., Ионов О.В. Нервно-психическое развитие детей раннего возраста, родившихся с очень низкой массой тела и экстремально низкой массой тела в федеральном государственном бюджетном учреждении «Научный центр акушерства, гинекологии и перинатологии им. В.И. Кулакова”. Детская и подростковая реабилитация. 2013;21(2):38-45.
Bode M.M., D’Eugenio D.B., Mettelman B.B. et al. Predictive Validity of the Bayley, Third Edition at 2 Years for Intelligence Quotient at 4 Years in Preterm Infants. J Dev Behav Pediatr 2014; 35:570-5.
Van Haastert IC, De Vries LS, Helders PJ, et al.Early gross motor development of preterm infants according to the Alberta Infant Motor Scale. J Pediatr Psychol. 2006; 146:617-22.
Mann V, Sundaresan A, Chaganti M. Cellular changes in the nervous system when exposed to gravitational variation. Neurol India. 2019;67(3):684-691. doi: 10.4103/0028-3886.263169.
Nday CM, Frantzidis C, Jackson G, Bamidis P, Kourtidou-Papadeli C. Neurophysiological changes in simulated microgravity: An animal model. Neurol India. 2019;67(Suppl):221-226. doi: 10.4103/0028-3886.259128.
Klein T, Wollseiffen P, Sanders M, Claassen J, Carnahan H, Abeln V. et al. The influence of microgravity on cerebral blood flow and electrocortical activity. Exp Brain Res. 2019;237(4):1057-1062. doi: 10.1007/s00221-019-05490-6.
Gallagher M, Arshad I, Ferrè ER. Gravity modulates behaviour control strategy. Exp Brain Res. 2019;237(4):989-994. doi: 10.1007/s00221-019-05479-1.
Kepenek-Varol B, Tanrıverdi M, İşcan A, Alemdaroğlu-Gürbüz İ. The acute effects of physiotherapy on general movement patterns in preterm infants: A single-blind study. Early Hum Dev. 2019;131:15-20. doi: 10.1016/j.earlhumdev.2019.02.004.
Kumar J, Upadhyay A, Dwivedi AK, Gothwal S, Jaiswal V, Aggarwal S. Effect of oil massage on growth in preterm neonates less than 1800 g: a randomized control trial. Indian J Pediatr. 2013;80(6):465-9. doi: 10.1007/s12098-012-0869-7.
Kara OK, Sahin S, Yardimci BN, Mutlu A. The role of the family in early intervention of preterm infants with abnormal general movements. Neurosciences (Riyadh). 2019;24(2):101-109. doi: 10.17712/nsj.2019.2.20180001.
Дополнительные файлы
Для цитирования:
For citation:
Refbacks
- Refbacks are not listed

Контент доступен под лицензией Creative Commons Attribution 3.0 License.
ISSN: (Print)
ISSN: (Online)